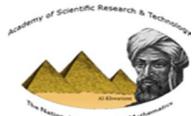


6th International Conference for Mathematics & Its Applications (ICMA24): Artificial Intelligent and Computational Mathematics.

IN MEMORY OF THE LATE PROF A A ASHOUR(1924-2017)

Under Auspices of


Prof. Gina Elfiki
Acting President ASRT

Prof. Ismail Abdel Ghafar
AASTMT president

Organized by
Egyptian Committee of Mathematics - ASRT
Cooperate with Arab Academy for Science, Technology and Maritime Transport
Smart Village campus, 30 November – 1 December 2024 (Hybird)

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)

Artificial Intelligent and Computational Mathematics.

Conference chair

Prof. Abdelshafy Obada

Prof. Alaa Abdelbary

Prof. Fayed Ghaleb

Organized by

Egyptian Committee of Mathematics - ASRT

Cooperate with Arab Academy for Science, Technology and Maritime Transport

Smart Village campus, 30 November – 1 December 2024 (Hybird)

Executive Committee:

Prof. Khaled Mekheimer

Prof. Alfaisal A. Hasan

Prof. Zeinab Mansour

Scientific Committee:

Prof. Ahmed M. El-Sayed

Prof. Ali Hadi

Prof. Mahmoud Abdel Atty

Prof. Ahmed M. Rashad

Prof. Elsayed M. Abu Dahab

Prof. Ali Wagdy Mohamed

Prof. Mohammad Siddiq

Prof. Nasser Swellam

Dr. Ahmed Refaie Ali

Publication Co Chairs:

Prof. Ahmed Radwan

Dr. Waleed Adel

Finance Chair:

Dr. Osama Marzouk

Local Committee

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

About Egyptian Committee of Mathematics


IMU is an international non-governmental and non-profit scientific organization, with the purpose of promoting international cooperation in mathematics. It is a member of the International Science Council (ISC), and the members of IMU are countries. The main objective of the IMU is to encourage international collaboration in mathematics, and all activities that will contribute to the development of mathematical sciences. The membership of Egypt has been covered through the [Academy of Scientific Research and Technology \(ASRT\)](#) and [Egyptian Mathematical Society](#) which represent the adhering organization and the mathematical society in Egypt. The Egyptian (National) Committee for IMU is one of the committees that belongs to ASRT ,it is the link between the mathematicians community in Egypt and IMU. It was established in the 1970's by Prof Ashour who was its chairman up to 2004 when he declined the chairmanship however he participated actively in its activities after words

An overview of the committee's activities in the previous period

- The First National Conference on Mathematics and its Applications (NCMA14) was held during the period from December 27-29, 2014 at Dar Al-Diyafa - Ain Shams University.
- A symposium was held on “Computational Methods for Linear and Nonlinear Systems” on May 31, 2014 at the Faculty of Science - Cairo University .
- The Second International Conference on Mathematics and Applications (ICMA15) was held during the period from December 27-29, 2015 at October University of Modern Sciences and Arts .
- A symposium on mathematics and its applications was held in cooperation with the Egyptian Mathematical Society on April 14, 2016, at Assiut University.
- The Second National Conference on Mathematics and its Applications (NCMA17) was held during the period from May 13-15, 2017 at the Hospitality House - Ain Shams University.
- The Third International Conference on Mathematics and its Applications (ICMA18) was held during the period from April 5-7, 2018 at Misr University of Science and Technology (MUST).
- Celebrating International Mathematics Day on March 14, 2019, in partnership with the Arab Academy for Science, Technology and Maritime Transport, Al-Azhar University, and Zagazig University.
- The Fourth International Conference on Mathematics and its Applications (ICMA20) was held during the period from October 7-9, 2021 in Hurghada.
- The Fifth International Conference on Mathematics and its Applications (ICMA23) was held during the period from March 14-16, 2023 at Future University .
- Holding an annual competition entitled “Mathematics Everywhere,” which was held over three seasons: March 2020, March 2022, March 2023, and 2024. The competition targets young school students under the age of 20 who are interested in mathematics and its applications, and financial prizes are awarded to the best three applicants. For the competition.
- Holding the summer/winter mathematics school in 2021 at the Arab Academy for Science, Technology and Maritime Transport in Alexandria, in 2023 at South Valley University, and in 2024 at Helwan University .
- Celebrating International Mathematics Day on March 7, 2024 at the Academy.

Upcoming activities of the committee

- Preparations are underway to hold the Sixth International Conference on Mathematics and its Applications (ICMA24), scheduled to be held in 2024.

Attia Abdel-Salam Ashour

Biodata: Attia Abdel-Salam Ashour was born in Damietta on 13-09-1924. He died peacefully at home in Cairo on 17-03-2017.

School: Ashour completed his primary school studies in 1935 in Damietta, and then moved with family to Cairo, where he completed the secondary school in Abbassia district in 1939.

University studies and career: Ashour joined the Faculty of Science at Fouad 1-st University in 1940 and graduated with the Special Degree in Mathematics with First Grade Honors in 1944. Ashour was appointed demonstrator at the Department of Pure Mathematics in the same year of graduation. Soon he was sent for PhD studies in 1945 to London University, where he met with his supervisor, the famous Albert Price, to whom the Theory of Electromagnetic Sheets is attributed. The well-known geophysicist Sydney Chapman, known as the father of Geophysics, who had close ties with the Department of Mathematics at Cairo, was behind this choice of the supervisor.

Ashour first got a Diploma in Mathematics, then a Ph.D. degree from the Imperial College in London in 1948.

Following are quotes from letters of H. Levy, the Dean of the Imperial College, about Ashour performance on Ph.D.

"Mr. Price was very pleased with Ashour's work which he considered showed good promise....Ashour would be able to do sufficient work in two years (from 1946) to obtain a Ph. D., and that it would be useful and of original value, and would begin a wide field of research." and

"... we are very impressed with his performance during his stay here ..."

Shortly after return to Cairo, Ashour was appointed Lecturer in 1948 in Applied Mathematics, Assistant Professor in 1957, then full Professor in 1966 in the same Department. In 1984, Ashour was appointed Professor Emeritus and kept working in the Department until his death.

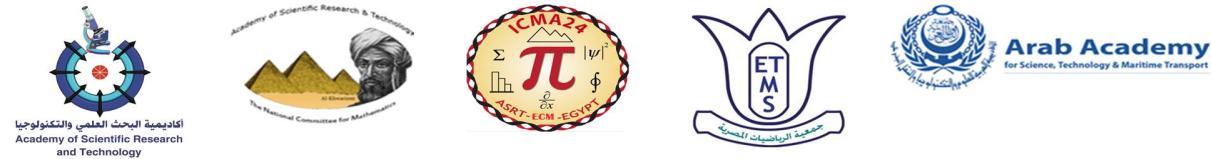
Ashour obtained a D.Sc. degree from London University in 1967 for brilliant work in Mathematics and in Geophysics.

Duties:

Ashour was Head of the Department of Applied Mathematics at Cairo University, then of the unified Department of Mathematics after 1971, during the periods 1959-1960, 1965-1969, 1971-1976, 1980-1984.

Awards:

Fouad 1-st prize in the fields of Mathematics, Physics and Astronomy in 1952.


Amin Lotfy Prize in 1954 and in 1963.

Order of Merit of Arts and Sciences of Egypt in 1976 and in 1988.

Mubarak Award in 2004.

Decorations:

Chevalier dans l' Ordre de la Palme Académique, France, 1985.

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Medal of the African Mathematical Union, 1990.

Chevalier dans l' Ordre National de Mérite, France, 1995.

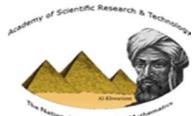
Scientific work:

Ashour produced 42 scientific papers, almost exclusively boundary-value problems involving orthogonal polynomials and applications in Geophysics, in particular investigations on Earth's magnetic field.

Six papers, two co-authored by Sydney Chapman, two with Albert Price, and two with Vincenzo Ferraro opened wide the road to international recognition in Geophysics in front of Attia Ashour. Technically, Ashour's work is characterized by heavy mathematics, matched only by few researchers.

Ashour co-authored the books covering the Mathematics Syllabus of the General Certificate of Education in Egypt as early as 1958. He was the Chief Editor of four books on Geophysics written specially for the scientists in the developing countries.

Internationally:


Secretary of the International Union of Geodesy & Geophysics in the period 1971-1975.

President of the International Union of Geodesy & Geophysics in the period 1975-1979.

President of the International Center for Pure and Applied Mathematics (CIMPA) in Nice, France in the period 1992-1996.

Let us end with the Closing Remarks of Uri Shamir to the General Assembly of the International Union of Geodesy & Geophysics, taken from MacTutor biography of Attia Ashour:

... it is my pleasure to present a special award, which is a surprise, to a person who has been a guiding light for the International Union of Geodesy & Geophysics since at least 1971, when he was elected Vice President of the International Union of Geodesy & Geophysics. He was then elected President from 1975-1979, and then was elected to the Finance Committee in 1983 - a position to which he was re-elected three more times. During his last term, 1995-1999, he served as the President of the Finance Committee. This person can be no other than Dr Attia Ashour, a much respected and much-loved member of our community. Dr Ashour, please accept this small gift and the gratitude of the International Union of Geodesy & Geophysics for your 22 years of service.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

أ.د. ليلى فهمي عبدالعال (٢٠٢٤-٢٦) (١٩٤٠/١٠/١) إلى
الأستاذ المتفرغ بقسم الرياضيات- كلية العلوم - جامعة القاهرة

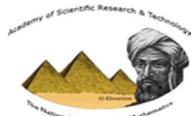
لقد كانت أستاذتنا الغالية ليلى فهمي عبدالعال علم من أعلام الرياضيات، في تخصص التحليل العددي بكلية العلوم جامعة القاهرة ، ويكفي ان اقول انها انشات شعبة الحاسوب الالى في قسم الرياضيات بعلوم القاهرة وكانت الشعبة الوحيدة في كليات العلوم في هذا الوقت.

التاريخ العلمي:

بكالوريوس رياضيات من جامعة عين شمس عام ١٩٦١ بتقدير جيد جدا مع مرتبة الشرف الثانية.
ماجستير رياضيات-جامعة لندن-كلية الملك (King's college) ١٩٦٥ -إنجلترا.
دكتوراه الفلسفة من كلية العلوم جامعة سسكس (Sussex University) انجلترا ١٩٦٩.

التاريخ الوظيفي:

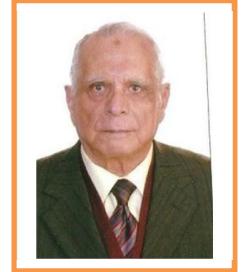
عضو بعثة جامعة اسيوط بإنجلترا من عام ١٩٦٤-١٩٦٩. معيد بعلوم اسيوط في ابريل ١٩٦٩.
معيد بعلوم القاهرة في اكتوبر ١٩٦٩.
مدرس بقسم الرياضيات- كلية العلوم - جامعة القاهرة - ديسمبر ١٩٦٩.
استاذ مساعد بقسم الرياضيات - كلية العلوم - جامعة القاهرة - ديسمبر ١٩٧٥.
استاذ بقسم الرياضيات - كلية العلوم - جامعة القاهرة - ديسمبر ١٩٨٠.
استاذ متفرغ بقسم الرياضيات - كلية العلوم - جامعة القاهرة - اغسطس ٢٠٠١.
عضو في لجنة ترقیات الأساتذة والأستاذة المساعدين من عام ١٩٨٠ و حتى عام ٢٠١٠.


الإشراف العلمي:

عدد ٨٠ رسالة ماجستير و ٥٠ رسالة دكتوراه.

٢. الجوائز العلمية: جائزة الدولة التشجعية (وسام العلوم والفنون من الدرجة الأولى) وقد وفّت بعلمها وطبيتها ودماثة أخلاقها لعقود من الزمن ومع أجيال متعاقبة دون أن تترك خدشاً في قلب قريب أو صديق . ونجم ينير سماء قسم الرياضيات في جامعة القاهرة، بعطائها وعلمها، فلم يكن عطاءها مقتصرًا على جامعة القاهرة فقط بل تجاوز ذلك إلى جامعات مصرية وعربية أخرى، حيث ترك بصماتها البارزة في عالم البحث العلمي وفي نفوس كل من عرفها، وكانت محطة أنظار الطلاب والزملاء على حد سواء بتفانيها وإخلاصها في تقديم العلم والمعرفة. رحمك الله أستاذنا الغالية أ.د. ليلى فهمي عبدالعال وطيب ثرaki

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology


The National Committee for Mathematics

Arab Academy
for Science, Technology & Maritime Transport

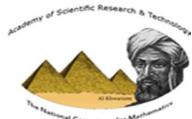
6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Mahmoud Mohammed Mostafa El-Borai
Mathematics & Computer Science Department,
Faculty of Science, Alexandria University

1979- present	Professor of Mathematics, Mathematics & Computer Science Department, Faculty of Science, Alexandria University, Egypt .
1987-1993	Head of the Department of Mathematics, Faculty of Science, Alexandria University Egypt .
1985-1987	Head of the Mathematics & Computer Science Department, Faculty of Science, Beirut Arab University, Lebanon .
1976-1980	Associate Professor, Faculty of Science, King Abdul-Aziz University, Saudi Arabia .
1974-1976	Assistant Professor in the Mathematics & Computer Science Department, Faculty of Science, Alexandria University Egypt .
1969-1974	Lecturer in Mathematics & Computer Science Department, Faculty of Science, Alexandria University Egypt .

1. RESEARCH PAPERS : More than 130 paper

SCIENTIFIC DEGREES OBTAINED UNDER Dr. FOR SUPERVISION / CO-SUPERVISION


- Dr. ElBorai is supervisor or co-supervisor of more than 100 Master and Ph. D. in the area of Theory of partial differential equations
- Dynamical systems and the artificial intelligence.
- Stochastic differential equations.
- Optimal control.
- Stochastic control
- The dynamics of robot.
- Abstract differential equations with fractional orders.
- Stochastic differential equations with fractional orders, (Hurst parameter).
- Dynamical systems and Cancer.
- Semi-group and integrated semi-group.

2. SCIENTIFIC AND PROFESSIONAL SOCIETIES

- A Member of the Swiss Society of Mathematics.
- A Member of the American Society of difference and differential equations.
- Member researcher's promotion group of the international journals of Engineering & Sciences

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

الاستاذ الدكتور / حسن مصطفى العويسي

قسم الرياضيات - كلية العلوم - جامعة الازهر

التاريخ العلمي

مساعد باحث معهد ابحاث البناء ١٩٦١-١٩٦٤

عضو بعثة داخلية للحصول على بكالوريوس العلوم في الرياضيات ١٩٦٤-١٩٦٦

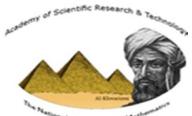
مرشح لبعثة خارجية ١٩٦٩-١٩٦٦

السفر الى بعثة حكومية الى المجر للحصول على الدكتوراه ١٩٦٩-١٩٧٣

مدرس بقسم الرياضيات - كلية العلوم بنين - جامعة الازهر ١٩٧٣-١٩٧٨

استاذ مساعد بقسم الرياضيات - كلية العلوم بنين - جامعة الازهر ١٩٧٨-١٩٨٣

اعارة الى جامعة الملك عبد العزيز - المملكة العربية السعودية ١٩٧٨-١٩٨٢


استاذ بقسم الرياضيات - كلية العلوم بنين - جامعة الازهر ١٩٨٣

اعارة الى جامعة صناعة باليمن كرئيس قسم الرياضيات ١٩٨٦-١٩٩٠

استاذ بقسم الرياضيات - كلية العلوم بنين - جامعة الازهر

اعارة الى جامعة الرياض للبنات ٢٠٠٣-٢٠٠٧ (الرئاسة العامة للبنات)

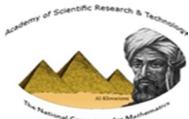
استاذ متفرغ - كلية العلوم بنين - جامعة الازهر حتى الان



Arab Academy

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

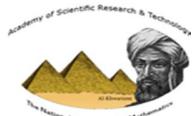
Scientific Program


Time	Saturday November 30, 2024		
10.00-10.30	Registration		
10.30-11.00	Opening Ceremony Hall (C) Prof. Alaa A Bary, Vice president of Committee Prof. Abdelshafy F. Obada, Conference Chairman Prof. Ismail Abdel Ghafar President of AASTM Prof. Gina Elfiki , Acting President of ASRT Honoring the pioneers - Awards Ceremony		
11.00 - 11.40	Hall (C) Chair Persons: Ali Hadi, Ahmed M A El-Sayed Prof. Alyaa Yousef, Mohamed Kholief Initiatives in Neurotechnology and AI Ethics in Egypt		
11.40-12.00	Break		
12.00 – 14.00	Session (1)- Conference room Chair Persons: Ali Wagdy Mohamed Mohamed Kholief.	Session (2)- Hall (C) Chair Persons: Ali Hadi Ahmed M A El-Sayed	Session (3)- Hall (3) Chair Persons: Khaled Mekheimer Samir Marzouk
	Salwa K. Abd-El-Hafiz Some Engineering Applications of Artificial Neural Networks	Teodor Bulboac Nehari's inequality generalisation for the q-difference operator and applications to majorization problems	Hager Ahmed Abd-Elhameid Effect of Initial Stress in a Semiconductor Thermoelastic Medium Under Ramp Type Heating with Photothermal Theory
	Ahmed Younes Applications of Partial Negation in Quantum Computing	Cemil Tunç , On the existence and stabilization of impulsive differential and integro-differential equations of second order	A.A.Youssef Nonlinear Rayleigh wave propagation in a thermoelastic structure consisting of a slab sandwiched by two half-spaces in dual-phase-lag
	N. Metwally Quantum steering via different quantum systems	Samir H. Saker Oscillation Theory of Delay Differential equations and Applications on Biological Models	Ahmed Saeed Ibrahim Thermocapillary Velocities of a Spherical Droplet Embedded in Brinkman Medium
	Ahmed Abdelhamid Ali Abdelhamid Zahia Explicit and Implicit Quantum Correlation Dynamics of Qubits Interacting with Thermal Baths	Mohamed El-Beltagy Basis Development of the Fractional Wiener Chaos Expansion with Applications to Systems with Fractional Brownian Motion	Mona Mohamed Mahmoud Khalil Synthesis of Azolo-Transition Metal Complex Films Doped with Polyvinyl Alcohol and Assessment of Their Thermal and Optical Properties
	Tarek Mohamed El-shahat On Entangling power of quantum information		Nasser M. EL-Maghrary The Vibration of Nano Resonators Under the Theory of Two-Temperature Generalized Thermoelasticity Based on Thermomass Motion
			Nasser M. EL-Maghrary The Vibration of Nano Resonators Based on The Theory of Two-Temperature Green-Naghdi Thermoelasticity Under Consideration of Thermomass Motion
14.00-14.10	Break		

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

	Session (4) – Conference room Chair Persons: Ahmed Younes Ahmed Refaei Ali	Session (5) Hall (C) Chair Persons: Alfaisal A. Hasan Mohamed El-Beltagy	Session (6) Hall (3) Chair Persons: Mohamed Kholief Ali Wagdy Mohamed	Session (7) Hall (4) Chair Persons: Khaled Mekheimer Elsayed . M. Abu Dahab
14.10- 16.10	Mohammed Ayfan Abdewi Securing Sensitive Information AI-Based Encryption Solutions.	Malak Mohammed Saleh Ba-Ali A fixed point and its asymptotic stability of the solution of a differential equation on the real half-line	Radwa Ahmed Osman Mohamed A Multi-Objective Interference Control Framework for Energy-Efficient IoT-Cellular Networks in 5G	Ziad A. Abouleseoud Enhanced Separation Efficiency and Reduced Pressure Drop in Multi-Inlet Cyclone Separators: A Computational Fluid Dynamics Study
	Alhussein M. Abdullah A Comprehensive Evaluation of Machine Learning Models for Pulmonary Diseases Classification	Eman Mohammed Albarg A constrained problem of state-dependent differential" equation subject to a state-dependent integral constraint"	Radwa Ahmed Osman Mohamed Enhancing AV2X Network Efficiency: An Adaptive Model Based on Hybrid Particle Swarm Optimization	Abdelala Ahmed Stochastic Process of Magneto-photo-Thermoelastic Waves in Semiconductor Materials with the Change in Electrical Conductivity
	Esraa Mamdouh Hashem Navigating the Risks and Challenges of AI Implementation in Healthcare	Shaymaa Ibrahim Nasim Khalil On some properties and applications of the fractal derivative	Hasnaa M. Saad Enhanced Quantum Entanglement in Hybrid Atomic-Optomechanical Systems via Nonlinear Cross-Kerr Interactions.	Khaled Lotfy A Novel Hydrodynamic Semiconductor Model under The Magnetic Field Effect and Laser Pulses
	Habiba Mohamed ElGohary Artificial Intelligence in Pulmonary Disease Diagnosis: Enhancing Accuracy and Efficiency through Medical Imaging and EHR Integration	Moamen Osama Radwan Salem Analysis of a parametric delay functional differential equation with nonlocal integral condition	Fatma Sherif The influence of negative velocity feedback control on a hybrid electric vehicle subject to external force	Shady El-Monier The Stability of Electrostatic Waves in a Multi-Component Magnetized Plasma System
	Yusuf Fathi Mohammad Recent Trends and Innovations in Medical Image Compression Techniques	Marwa Abdelaziz Dynamic Analysis of Negative Derivative Feedback Controllers with Geometrically Nonlinear Damping under Harmonic Forcing	Ibrahim Gad Leveraging Machine Learning for Causal Inference in Water Quality Assessment"	Hadeer Adel Azzam Simulation study of the induced magnetic field's impact for Jeffrey fluid with a complex wavy slip boundary within a curved tube.
	Ayat Karrar Diagnosis Of Pulmonary Lung Nodules Based on a Computer Aided Diagnosis (CADx) System	Wael M.A. Khalifa Comparative Forecasting of Electric Load Consumption in Egypt Using Differential Equation Models	Yasmin Gamal Secure Privacy Preserving Banking Customer Churn Prediction Using Federated Learning and Fully Homomorphic Encryption	Mohamed Magdy Elsayed A Mathematical Model for Exploring Depression Diagnosis
	Habiba Aly Sayed Hussein Microbiome Biomarkers and Breast Cancer: A Machine Learning Approach	Muhammad Aref Abdullah Arfeen Evaluating Machine Learning Models for Cost-Effective Shipping Line Selection in Freight Forwarding	Patrick Tenga Survival Prediction of Breast Cancer using an Ensemble XGBoost-Deep Learning Neural Network	Abdelaziz El-Dali Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials
	Dawlat Sameh Ali A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode	Ibrahim Abbas A numerical investigation of the 2-D nonequilibrium DPL bio-heat model using the ADI-FD method	Hassan Ibrahim Detecting Malicious HTTP Requests Using Deep Learning: A BERT-Based Approach	Emad Fali Wanis Theoretical Investigation of Electrokinetic Flow in a Microtube Using Micropolarity, Slip Conditions, and Electrical Double Layer Dynamics
			Ahmed Nabil Attwa Stochastic Feature Extraction in Algorithmic Trading for Enhanced Portfolio Optimization	
16.10	Lunch Hall (C)			

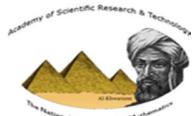

Arab Academy

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Time	Sunday December 1, 2024			
10.30- 12.00	Session (8) Conference room Chair Persons: Ahmed Radwan Ahmed M A El-Sayed		Session (9) Hall (C) Chair Persons: Wael Abbas N. H. Sweilam	Session (10) Hall (3) Chair Persons: Hesham A. Elkaranshawy Adel Refaei
	Nashat Farid Operator ideals, s-numbers of operators and ideals constructed by means of a special space of sequences (sss) and an s-function.		Youssri Hassan Youssri Spectral Solutions of Differential Equations via New Orthogonal Polynomials and Special Functions	Hesham A. Elkaranshawy A proper mathematical model for cardiac electrical activities
	Zeinab Mansour On Lidstone expansions of entire functions		N. H. Sweilam A Novel Crossover Dynamics of Monkeypox Disease Mathematical Model Using Fractional Differential Equations Based on the Psi-Caputo Derivative: Numerical Treatments	Ahmed Elsayed Mahmoud Gouda Cluster Head Selection Algorithm Using PSO
	Ahmad Gamal Existence and stability of solutions for ρ - proportional ω -weighted ψ -Hilfer fractional differential inclusions in the presence of non-instantaneous impulses in Banach spaces		Salah Samy CFD Modelling for Air Distribution Systems in Industrial Control Room	Ahmed Ayman Abdel-aal A Tree-LSTM based Approach for Enhanced Machinery Prognostics
			Mahmoud Ahmed Mohamed Amin Behavior of reinforced concrete columns repaired by steel jackets filled with different types of concrete	Mohamed Elsayed Mohamed
				Esraa Reda abdel-Hady mohamed El-ziaty Unveiling Quantum Features of Time-Dependent Electron Spins influenced by Zeeman Energy and Symmetric Cross Spin
12.00- 12.30	Break			
12.30- 14.30	Session (11) Conference room Chair Persons: Nashat Farid Zeinab Mansour		Session (12) Hall (C) Chair Persons: Alfaaisal A. Hasan Ahmed Refaei Ali	Session (13) Hall (3) Chair Persons: Naser H. Sweilam Adel Refaei
	Enas M. Shehata Hermite-Hadamard inequalities for quantum integrals: a unified approach		Samir Abdelmaged Farag Submaximality in Bi-Weak Structures	Ahmed Ibrahim Mohamed Abosaid New characterizations of weights on dynamic inequalities involving a Hardy operator
	Mohamed A. Mamon On recent trends of Geometric Function Theory		Waheed Mohamed Ahmed Amin Some Variants of Čech Δ -Normal Closure Space	Enas Omer Mahfouth Suhal Efficient Line-Search Modified Bat Algorithm for Solving Large-Scale Global Optimization Problem
	Asmaa O. Mohammed A Study of Extensions of Classical Summation Theorems for the Series 3F2 and 4F3 with Applications		Youssef Mahfouz Cost optimization of reinforced concrete buildings: A comparative study	Abdelazeem Abdelwahab Strictly two-sided Commutative Quantal
	Fatma Abdelaaty Elgawish On inverse q-Sturm-Liouville problems		Ahmed A. El-Deeb Some Novel Dynamic Inequalities and their Applications on Time Scales. Theory	Medhat A. El-Messiry The Spatial Distribution of the Critical Fusion Frequency over the Retina
	Souhad Salama Almassri Multiplicative Frameworks on Fixed Point Theory and Its Applications		A.A. Abd El-Bary Applying a Novel (PBH) Distribution in Statistical Modeling for COVID-19 Data"	Medhat M. El-Messiry Diffusion coefficient of 3D growth of tumor cells
	Nermeen Ashraf Shawky Structural assessment of historical masonry structures using various strengthening techniques		Shreen El-Sapa Time-periodic electrokinetic analysis of a micropolar fluid flow through hydrophobic microannulus	Mohamed AbdElAal Mustafa ElQurashi Novel Wrapped Distribution and its application
	Naglaa Abozeid Reliability characteristics and estimation of parameters based on censored model data to extended Gompertz distribution with application			Massoud Moustafa Aboukhalaf Massoud Comparing Different Fractional-Order Response for Lorenz Chaotic System
	Toka Waleed Experimental Study on Concrete Performance under Partial Replacement of Normal Coarse Aggregate by Sand-Light Stone			Amr Mohamed ElAgamy Modified bond stress equation of fiber reinforced polymers bars embedded in concrete under uniaxial lateral tensile stresses using numerical analysis
	Fatma N. Fouad Parameter estimation and lifetime analysis of the power-modified kies-exponential distribution under progressive Type-II censoring with application			Srour Maged Abdelfaiha Mohamed Elnady A New Local Fractional Derivative with Applications
14.30- 15.00	Main Hall Chair: Prof. Abdelshafy F. Obada, Prof. Alaa A Bary, Recommendation and Closing			
15.00	Lunch Hall (C)			

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


Arab Academy
for Science, Technology & Maritime Transport

Lecture

No.	Title	Authors	Page No
K1	On some different senses of the derivatives and integrals: Theory and applications	Ahmed M A El-Sayed	12
K2	Oscillation Theory of Delay Differential equations and Applications on Biological Models	Samir H. Saker	13
K3	Quantum steering via different quantum systems	N. Metwally	14
K4	Applications of Partial Negation in Quantum Computing	Ahmed Younes	15
K5	Spectral Solutions of Differential Equations via New Orthogonal Polynomials and Special Functions	Youssri Hassan Youssri	16
K6	Nehari's inequality generalisation for the q-difference operator and applications to majorization problems	Teodor Bulboac	17
K7	On the existence and stabilization of impulsive differential and integro-differential equations of second order	Cemil Tunç	18
K8	Some Engineering Applications of Artificial Neural Networks	Salwa K. Abd-El-Hafiz	19
K9	Initiatives in Neurotechnology and AI Ethics in Egypt	Alyaa Yousef, Mohamed Holier	20
K11	A Novel Crossover Dynamics of Monkeypox Disease Mathematical Model Using Fractional Differential Equations Based on the Psi-Caputo Derivative: Numerical Treatments	Nasser Sewilam	21
K12	Basis Development of the Fractional Wiener Chaos Expansion with Applications to Systems with Fractional Brownian Motion	Mohamed El-Beltagy	22
EW1	Operator ideals, s-numbers of operators and ideals constructed by means of a special space of sequences (sss) and an s-function.	Nashat Farid	23
EW2	On Lidstone expansions of entire functions	Zeinab Mansour	24
EW3	Existence and stability of solutions for ρ - proportional ω -weighted ψ -Hilfer fractional differential inclusions in the presence of non-instantaneous impulses in Banach spaces	Ahmad Gamal	25

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

The National Committee for Mathematics

ETMS

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

On Some Different Senses of the Stochastic Fractional-Order Derivatives and Integrals: Theory and applications

Ahmed M A El-Sayed

Faculty of science – Alexandria University

amasayed@alexu.edu.eg

Abstract

In this talk we give some different concepts of ordinary and fractional-order derivatives and integral, then we give some applications.

Contents:

Derivative and integral of mean square second order stochastic process.

Fractional-order Derivative and integral of mean square second order stochastic process.

Random differential equations with mean square second order stochastic process.


Stochastic Ito-differential and integral.

Stochastic Ito-differential equations.

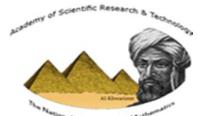
Arbitrary (fractional) orders stochastic differential equations.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport


Oscillation Theory of Delay Differential equations and Applications on Biological Models

Samir H. Saker

Faculty of Science, New Mansoura University.

Abstract

In this talk I will present some oscillation results of first order delay differential equations and apply the results on studying the oscillation of delay models in biology. Next, I will talk about the oscillation of second order delay differential equations by applying different techniques. Some examples will be presented for illustrations.

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Quantum steering via different quantum systems

N. Metwally

Department of Mathematics, College of science, University of Bahrain,

Abstract

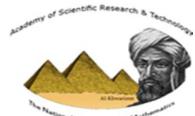
In this talk, I shall review the concept of quantum steering process. The possibility that one partner steers his/her partner will be introduced for different quantum systems. Also, the bi- directional steering will be discussed.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Applications of Partial Negation in Quantum Computing


Ahmed Younes

Faculty of Science Alexandria University

ayounes@alexu.edu.eg

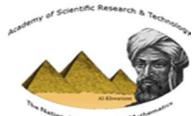
Abstract

Partial negation operator is a negation operator rooted to an arbitrary nth root. Partial negation has many applications in manipulating the information contents in a qubit, for example, data encoding which is useful in quantum machine learning, quantum image processing, quantum searching and many more. The partial negation operator can also be used to read the information contents of an unknown qubit system without using sharp measurement. Sharp measurement is an irreversible operation that will cause the superposition to collapse to one of the two possible states in a probabilistic way. This talk will discuss applications of using partial negation operator and will show a quantum algorithm to read the information contents of an unknown qubit without applying sharp measurement on that qubit and so the superposition will not collapse. A quantum feedback control scheme will be shown where sharp measurement will be applied iteratively on an auxiliary qubit weakly entangled with the unknown qubit.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Spectral Solutions of Differential Equations via New Orthogonal Polynomials and Special Functions


Youssri Hassan Youssri

Faculty of Science Cairo University

youssri@cu.edu.eg

Abstract

Herein, we introduce innovative spectral techniques for solving various linear and fractional differential equations. Leveraging shifted fifth- and sixth-kind Chebyshev polynomials, we develop novel Galerkin, Tau, and collocation methods tailored to specific problems, including hyperbolic equations, fractional diffusion-wave models, and heat conduction problems. These methods exhibit exponential convergence with minimal computational modes, which makes them ideal for treating fractional problems, even those with non-smooth solutions. Emphasis will be placed on the flexibility and efficiency of the proposed approaches in solving practical problems, demonstrating their advantages over classical methods. The talk will conclude with insights into a fast Galerkin-based solution to the fractional Rayleigh-Stokes problem, showcasing the power of orthogonal polynomials in numerical analysis.

Nehari's inequality generalisation for the q-difference operator and applications to majorization problems

Teodor Bulboacă

Babeș-Bolyai University, 400084 Cluj-Napoca, Romania

Abstract

Because the q-calculus (quantum calculus) has applications in many mathematical fields, first we gave the q-analogue generalisation of the well-known Nehari's inequality [3, p. 168] that will be used to the prove some majorisation results. Thus, if D_q represents the Jackson's q-derivative operator, then:

Theorem 1. If ω is an analytic function in D , such that $|\omega(z)| < 1$, $z \in D$, then

$$D_q(\omega(z)) \leq \frac{1 - \overline{\omega(zq)}\omega(z)}{q - |z|2q}, \quad z \in D, \quad (0 < q < 1).$$

Taking $q \rightarrow 1^-$ in the above result we obtain the Nehari's inequality.

Let denote by P the subclass of all analytic functions χ in the open unit disk D , such that χ has positive real part in D with $\chi(0) = 1$. For a given $\chi \in P$ and $q \in (0, 1)$ we define the family $S_q(\chi) \subset A$ where A represents the class of analytic functions in D usually normalized by $\chi(0) = \chi'(0) - 1 = 0$ by

$$S_q(\chi) = \{k \in A : zD_qk(z) \prec \chi(z)\}.$$

Like in [1], assuming that k and h are two analytic functions in D , then k is said to be majorized by h in D , denoted by $k(z) \ll h(z)$, if there exists an analytic function μ in D such that $|\mu(z)| \leq 1$ and $k(z) = \mu(z)h(z)$ for all $z \in D$.

The main result is a modified version of majorization problem for the category $S_q(\chi)$ connected with the Theorem 1.1 of [2], as follows:

Theorem 2. Let l be analytic in D with $l \not\equiv 0$, and let $h \in S_q(\chi)$. If $l(z) \ll h(z)$ in D such that $l \not\equiv c h$ with $|c| = 1$, and $q \in (0, 1)$, then

$$|D_q l(z)| \leq |D_q h(z)|, \quad |z| \leq r \leq r^*,$$

where r^* is the positive root of the equation


$$(1 - \eta)\rho qr^2 + (1 + \eta)r - (1 - \eta)\rho = 0,$$

with $\eta = \eta(r, q) := \max |\mu(\zeta)|$ and $\rho = \rho(r) := \min |\chi(z)|$. The function μ is those that realize

$$|\zeta| = qr, \quad |z| = r$$

the majorization $l(z) \ll h(z)$ in D , shown in the above definition.

This theorem is followed by many interesting particular and special cases obtained for different choice of the parameters and functions.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

On the existence and stabilization of impulsive differential and integro-differential equations of second order

Cemil Tunç

Department of Mathematics , Faculty of Sciences Van Yuzuncu Yil University
65080, Campus, Van – Turkey [E-mail:cemtunc@yahoo.com](mailto:cemtunc@yahoo.com)

Abstract

This study considers some impulsive differential and integro-differential equations of second order, which have multiple time delays. In the study, the existence of solutions and exponentially stabilization in relation to the considered impulsive mathematical models are investigated. The results of the study include sufficient conditions regarding these concepts. The techniques with regard to the proofs of results depend on the Schaefer fixed point theorem, fixed impulse effects and Lyapunov– Krasovskii functional approach, respectively. The outcomes of this study have new contributions to the qualitative theory of impulsive differential and impulsive integro-differential equations. They also extend and improve some results that can be found in the relevant literature.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Some Engineering Applications of Artificial Neural Networks

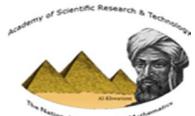
Salwa K. Abd-El-Hafiz


Engineering Mathematics and Physics Department Faculty of ngineering, Cairo University

Abstract

3/4 Artificial neural networks (ANN) attempt to imitate the biological neural connections of the human brain, where they typically consist of a large number of elementary processing units called neurons. The tasks performed by neural networks can be classified as those requiring supervised or unsupervised learning. In supervised learning, the network is trained using data for which the inputs and the corresponding desired responses are given. On the other hand, unsupervised learning must rely on guidance obtained heuristically by the system examining different sample data or the environment. Different ANN architectures, such as feedforward neural networks (FFNN) and Hopfield neural networks (HNN), will be briefly overviewed in this presentation along with their learning mechanisms. In addition, different engineering applications of those networks will be presented including modeling and field computation in complex magnetic media, characterizing software development method, and software defect prediction

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology


6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Initiatives in Neurotechnology and AI Ethics in Egypt

Alyaa Yousef, Mohamed Holier

Arab Academy
for Science, Technology & Maritime Transport

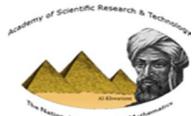
6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A Novel Crossover Dynamics of Monkeypox Disease Mathematical Model Using Fractional Differential Equations Based on the Psi-Caputo Derivative: Numerical Treatments

N. H. Sweilam¹, S. M. AL-Mekhlafi²

¹ Mathematics Department, Faculty of Science, Cairo University, Giza, Egypt

²Department of Mathematics, Faculty of Education, Sanaa University, Yemen


nsweilam@sci.cu.edu.eg¹ , sih.almikhafi@su.edu.ye²

Abstract

A novel crossover model for monkeypox disease that incorporates Psi-Caputo fractional derivatives is presented here, where we use a simple nonstandard kernel function. We can be obtained the Caputo and Caputo-Katugampola derivatives as special cases from the proposed derivative. Four different models of variable-order, fractional order, fractal fractional, and fractional stochastic derivatives driven by fractional Brownian motion (FBM) are defined in four-time intervals for the crossover dynamics model. Psi-nonstandard finite difference method (Psi-NFDM) is constructed to solve the mathematical models of variable order, fractional order, and fractal fractional order. Also, the nonstandard modified Euler Maruyama method (NMEMM) is used to study the fractional stochastic model. Numerous numerical tests and comparisons with real data were conducted to validate the methods efficacy and support the theoretical conclusions.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Basis Development of the Fractional Wiener Chaos Expansion with Applications to Systems with Fractional Brownian Motion

Mohamed El-Beltagy

Cairo University, Engineering Faculty, Engineering Math. Dept.

Abstract

Many real-life processes are modeled with differential equations that include fractional derivatives in addition to fractional Brownian motion. These models still require developing techniques for their analysis and statistical quantifications. In this paper, we develop a new practical basis for processes motivated by or including fractional Brownian motion. The background theory is outlined with the conditions for existence and uniqueness. The new basis constructs a complete set based on the fractional sine and cosine functions with orthogonal property that can be used in analyzing and computing statistics of the processes modeled with fractional stochastic differential equations (SFDs). The developed basis is used to analyze some well-known models both analytically and numerically. The results show the efficiency of the fractional Wiener chaos expansion (FWCE) technique. The outlined development technique can be extended to other basis sets suitable for different applications.

Keywords: Stochastic processes, fractional differential equations, fractional Brownian motion, orthogonal basis, Fractional Wiener chaos expansion.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology
The National Committee for Mathematics

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Operator ideals, s-numbers of operators and ideals constructed by means of a special space of sequences (sss) and an s-function.

Prof. Dr. Nashat Farid,

Ain Shams University, nashatfaried@sci.asu.edu.eg

Abstract

Examples of operator ideals:

Normed and quasi normed operator ideals. Ideal of nuclear operators, ideal of compact operators, absolutely summing operators and ideal of p Shatten- Von- Neuman operators.

Grothendieck conjecture about the smallness of the ideal of nuclear operators. Pisier spaces.

The ideal of compact operators is not small.

The ideal of p Shatten-Von-Neuman operators is a small ideal.

Examples of s-numbers of operators:


Approximation numbers, Kolmogorov numbers, Gelfand numbers and Tikhomirov numbers.

Special space of sequences.

General way of constructing an ideal of operators by means of a special space of sequences (sss) and a sequence of s-numbers.

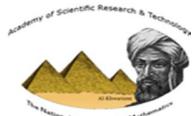
أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة العلوم والتكنولوجيا المعمدانية

Arab Academy
for Science, Technology & Maritime Transport


Lidstone expansions of entire functions

Zeinab Mansour

Cairo University, Egypt, zsmansour@cu.edu.eg

Abstract

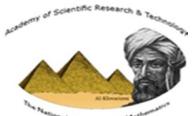
Lidstone expansions express an entire function $f(z)$ in terms of the values of the derivatives of even orders at 0,1. The polynomials in the expansion are called Lidstone polynomials. They are Bernoulli polynomials; many authors introduced necessary and (or) sufficient conditions for the absolute convergence of the series in the expansion. The classical exponential function plays an essential role in deriving the Lidstone series. In the q theory, we have three q -difference operators, the Jackson q -difference operator, the symmetric q -difference operator, and the Askey-Wilson q -difference operator. Each operator is associated with a q -analog of the exponential function. In this talk, we introduce q -extensions to the Lidstone expansion associated with these operators. New three q -analogs of Bernoulli polynomials with nice properties are coming out.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Existence and stability of solutions for ρ - proportional ω -weighted ψ -Hilfer fractional differential inclusions in the presence of non-instantaneous impulses in Banach spaces

Ahmed Gamal Ibrahim


Former prof. Faculty of Science Cairo University

Former prof. King Faisal University, Al-Ahsa 31982, Saudi Arabia

agamal@kfu.edu.sa or agamal2000@yahoo.com

Abstract

In this lecture, we present the notion of the ρ - proportional ω - weighted ψ -Hilfer fractional differential operator with the lower limit at a point $a \in [0, b)$, $D_{a,x}^{\alpha, \beta, \rho, \omega, \psi}$, and some of its properties are deduced. Then, we consider a non-instantaneous impulses differential inclusion containing $D_{a,x}^{\alpha, \beta, \rho, \omega, \psi}$ of order $\alpha \in (1,2)$ and of kind $\beta \in [0,1]$ in Banach spaces, where $\rho \in (0,1]$, $\omega: [0, b] \rightarrow]0, \infty[$ and $\psi: [0, b] \rightarrow \mathbb{R}$ is strictly increasing and continuously differentiable function. We mention the relevant between any solution to the studied problem and the integral equation that correspond it, and then, by using an appropriate fixed-point theorem for multi-valued functions, we present two results for the existence of these solutions. In the first result, the compactness of the solutions set is proved. Next, we present the concept of the (ρ, ω, ψ) -generalized Ulam- Hyers stability of solutions and, by using the properties of multi-valued weakly Picard operators, we present a result regarding the (ρ, ω, ψ) -generalized Ulam- Hyers stability of the objective problem. Two examples to support our findings are presented.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Articles

ID	Title	Authors	Page No
2	Effect of Initial Stress in a Semiconductor Thermoelastic Medium Under Ramp Type Heating with Photothermal Theory	Hager Ahmed Abd-Elhameid	30
3	Analysis of Contact Mechanics for Flat Stamps on Graded Coatings Using Shifted Legendre Polynomials of the First Kind	Sara A. Mekky	31
4	Securing Sensitive Information AI-Based Encryption Solutions.	Mohammed Ayfan Abdewi	32
5	A fixed point and its asymptotic stability of the solution of a differential equation on the real half-line	Malak Mohammed Saleh Ba-Ali	33
6	New characterizations of weights on dynamic inequalities involving a Hardy operator	Ahmed Ibrahim Mohamed Mahmoud Abosaeid	34
7	Nonlinear Rayleigh wave propagation in a thermoelastic structure consisting of a slab sandwiched by two half-spaces in dual-phase-lag	A.A. Youssef	35
8	A constrained problem of state-dependent differential" equation subject to a state-dependent integral constraint"	Eman mohammed mohammed albarg	36
9	On some properties and applications of the fractal derivative	Shaymaa Ibrahim Nasim Khalil Nasim	37
10	Efficient Line-Search Modified Bat Algorithm for Solving Large-Scale Global Optimization Problem	Enas Omer Mahfouth Suhail	38
11	Explicit and Implicit Quantum Correlation Dynamics of Qubits Interacting with Thermal Baths	Ahmed Abdelhamid Ali Abdelhamid Zahia	39
12	Analysis of a parametric delay functional differential equation with nonlocal integral condition	Moamen Osama Radwan Salem	40
13	Spectral Solutions of Differential Equations via New Orthogonal Polynomials and Special Functions	Youssri Hassan Youssri	41
14	Spectral Collocation Method via Fermat Polynomials for Fredholm-Volterra Integral Equations with Singular Kernels and Fractional Differential Equations	Mostafa Ahmed Taema	42
15	A Tau Approach for Solving Time-Fractional Heat Equation Based on the Shifted Sixth-Kind Chebyshev Polynomials	Esraa Magdy Abdelghany Abdullah	43
16	Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel	Ahmed Gamal Atta	44
17	Hermite-Hadamard inequalities for quantum integrals: a unified approach	Enas Mohyi Shehata Soliman	45
18	Multiplicative Frameworks on Fixed Point Theory and Its Applications	Souhad Salama Soliman Almassri	46
19	On a Coupled System of Stochastic Integral Equations of Fractional Orders	Hanem Farouk Abdelfatah Madkour	47
20	Modified bond stress equation of fiber reinforced polymers bars embedded in concrete under uniaxial lateral tensile stresses using numerical analysis	Amr Mohamed ElAgamy	48
21	A Comprehensive Evaluation of Machine Learning Models for Pulmonary Diseases Classification	Alhussein M. Abdullah	49
22	Navigating the Risks and Challenges of AI Implementation in Healthcare	Esraa Mamdouh Hashem	50
23	A Study of Extensions of Classical Summation Theorems For the Series 3F2 and 4F3with Applications	Asmaa O. Mohammed	51

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

25	On Inverse q-Sturm-Liouville Problems	Fatma Abdely Elgawish	52
26	On recent trends of Geometric Function Theory	Mohamed A. Mamon	53
29	Artificial Intelligence in Pulmonary Disease Diagnosis: Enhancing Accuracy and Efficiency through Medical Imaging and EHR Integration	Habiba Mohamed ElGohary	54
30	Recent Trends and Innovations in Medical Image Compression Techniques	Yusuf Fathi Mohammad	55
31	Diagnosis Of Pulmonary Lung Nodules Based on a Computer Aided Diagnosis (CADx) System	Ayat Karrar	56
32	Strictly two-sided Commutative Quantal	Abdelazeem Abdelwahab	57
37	The Spatial Distribution of the Critical Fusion Frequency over the Retina	Medhat A. El-Messiery	58
38	Diffusion coefficient of 3d growth of tumor cells	Medhat M. El-Messiery	59
39	A proper mathematical model for cardiac electrical activities	Hesham A. Elkaranshawy	60
40	Microbiome Biomarkers and Breast Cancer: A Machine Learning Approach	Habiba Aly Sayed Hussein	61
41	Thermocapillary Velocities of a Spherical Droplet Embedded in Brinkman Medium	Ahmed Saeed Ibrahim	62
42	On Entangling power of quantum information	Tarek Mohamed El-shahat	63
43	Structural assessment of historical masonry structures using various strengthening techniques	Nermeen Ashraf Shawky	64
44	Reliability characteristics and estimation of parameters based on censored model data to extended Gompertz distribution with application	Naglaa Abozeid	65
45	A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode	Dawlat Sameh Ali	66
46	Synthesis of Azolo-Transition Metal Complex Films Doped with Polyvinyl Alcohol and Assessment of Their Thermal and Optical Properties	mona mohamed mahmoud khalil	67
47	Experimental Study on Concrete Performance under Partial Replacement of Normal Coarse Aggregate by Sand-Light Stone	Toka Waleed	68
48	Novel Wrapped Distribution and its application	Mohamed AbdElaal Mustafa ElQurashi	69
49	A New Local Fractional Derivative with Applications	Sroor Maged Abdelhai Mohamed Elnady	70
51	CFD Modelling for Air Distribution Systems in Industrial Control Room	Salah samy	71
52	The Vibration of Nano Resonators Based on The Theory of Two-Temperature Green-Naghdi Thermoelasticity Under Consideration of Thermomass Motion	Nasser M. EL-Maghry	72
53	The Vibration of Nano Resonators Under the Theory of Two-Temperature Generalized Thermoviscoelasticity Based on Thermomass Motion	Nasser M. EL-Maghry	73
55	Behavior of reinforced concrete columns repaired by steel jackets filled with different types of concrete	Mahmoud Ahmed M.Amin	74
56	Theoretical Investigation of Electrokinetic Flow in a Microtube Using Micropolarity, Slip Conditions, and Electrical Double Layer Dynamics	Emad Fali Wanas	75
57	Stress-Strength Reliability of Monsef Distribution for Modeling	Mohamed AbdElaal Mustafa ElQurashi	76
58	Enhanced Separation Efficiency and Reduced Pressure Drop in Multi-Inlet Cyclone Separators: A Computational Fluid Dynamics Study	Ziad A. Abouleseoud	77
59	The effect of moving heat source in DPL model on viscoelastic	Abdelrahman	78

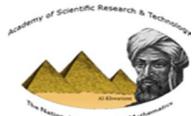
6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

	biological tissues during thermal treatment applications	Abdelkareem Abdellah	
60	Comparing Different Fractional-Order Response for Lorenz Chaotic System	Massoud Moustafa Aboukhalaf Massoud	79
61	Parameter estimation and lifetime analysis of the power-modified kies-exponential distribution under progressive Type-II censoring with application	Fatma N. Fouad	80
62	A Multi-Objective Interference Control Framework for Energy-Efficient IoT-Cellular Networks in 5G	Radwa Ahmed Osman Mohamed	81
63	Enhancing AV2X Network Efficiency: An Adaptive Model Based on Hybrid Particle Swarm Optimization	Radwa Ahmed Osman Mohamed	82
64	Cluster Head Selection Algorithm Using PSO	Ahmed Elsayed Mahmoud Gouda	83
65	Stochastic Process of Magneto-photo-Thermoelastic Waves in Semiconductor Materials with the Change in Electrical Conductivity	Abdelaala Ahmed	84
66	A Novel Hydrodynamic Semiconductor Model under The Magnetic Field Effect and Laser Pulses	Khaled Lotfy	85
67	Enhanced Quantum Entanglement in Hybrid Atomic-Optomechanical Systems via Nonlinear Cross-Kerr Interactions.	Hasnna M. Saad	86
68	The Stability of Electrostatic Waves in a Multi-Component Magnetized Plasma System	Shady El-Monier	87
69	Simulation study of the induced magnetic field's impact for Jeffrey fluid with a complex wavy slip boundary within a curved tube.	Hadeer Adel Azzam	88
70	A Tree-LSTM based Approach for Enhanced Machinery Prognostics	Ahmed Ayman Abdel-aal	89
71	The influence of negative velocity feedback control on a hybrid electric vehicle subject to external force	Fatma sherif	90
72	Evaluating Machine Learning Models for Cost-Effective Shipping Line Selection in Freight Forwarding	Muhammad Aref Abdullah Arfeen	91
74	Unveiling Quantum Features of Time-Dependent Electron Spins influenced by Zeeman Energy and Symmetric Cross Spin	Esraa Reda abdel-Hady mohamed El-ziaty	92
75	A Mathematical Model for Exploring Depression Diagnosis	Mohamed Magdy Elsayed	93
76	Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials	Abdelaziz El-Dali	94
77	Submaximality in Bi-Weak Structures	Samir abdelmaged farag	95
78	Some Variants of Čech Δ -Normal Closure Space	Waheed Mohamed Ahmed Amin	96
79	Dynamic Analysis of Negative Derivative Feedback Controllers with Geometrically Nonlinear Damping under Harmonic Forcing	marwa abdelaziz	97
80	Leveraging Machine Learning for Causal Inference in Water Quality Assessment"	Ibrahim Gad	98
81	A numerical investigation of the 2-D nonequilibrium DPL bio-heat model using the ADI-FD method	Ibrahim Abbas	99
82	Applying a Novel (PBH) Distribution in Statistical Modeling for COVID-19 Data"	A.A. Abd El-Bary	100
83	Cost optimization of reinforced concrete buildings: A comparative study	Youssef Mahfouz	101
84	Secure Privacy Preserving Banking Customer Churn Prediction Using Federated Learning and Fully Homomorphic Encryption	Yasmin Gamal	102
85	Some Novel Dynamic Inequalities and their Applications on Time Scales. Theory	Ahmed A. El-Deeb	103

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology
The National Committee for Mathematics

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.



ETMS
جامعة التقانيات البحرية

Arab Academy
for Science, Technology & Maritime Transport

86	Using Legendre polynomials Formulas at Fresnel Integral Diffraction	Nermin Saber	104
90	Comparative Forecasting of Electric Load Consumption in Egypt Using Differential Equation Models	Wael M.A. Khalifa	105
91	Time-periodic electrokinetic analysis of a micropolar fluid flow through hydrophobic microannulus	Shreen El-Sapa	106

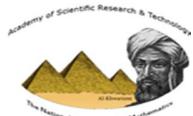
Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Effect of Initial Stress in a Semiconductor Thermoelastic Medium Under Ramp Type Heating with Photothermal Theory

A.M. Abd-Allah¹, S.M. Abo-Dahab², R.A. Mohamed², H.A. Abd-Elahmeid².

*¹Mathematics Department, Faculty of Science, Sohag University, Sohag, Egypt.


*²Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt.

Abstract

This study investigates deformations within a homogeneous semiconductor thermoplastic medium subjected to initial stress and ramp type heating employing the theoretical photothermal model. Utilizing the normal mode method, precise expressions for key distributions, such as temperature, carrier density, stresses and displacement components, are derived. Numerical computations are facilitated through Mathematica programming, focusing on a material exhibiting properties analogous to a silicon. Integrating Photothermal model, initial stress, wave number and time, the research visually portrays the impact of these factors on the considered state variables through graphical representations. The numerical and graphical results underscore the significant influence of wave number, time, and initial stress on the various field quantities. This investigation provides valuable insights into the synergistic dynamics among an initial stress constituent, semiconductor structures, and wave propagation, enabling advancements in nuclear reactors' construction, operation, electrical circuits, and solar cells.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Analysis of Contact Mechanics for Flat Stamps on Graded Coatings Using Shifted Legendre Polynomials of the First Kind.

Ahmed Y. Sayed¹, E. S. Shoukralla², Alfaisal A. Hasan³, Sara A. Mekkyy⁴, Nermin Saber⁵

1 Physics and Engineering Mathematics Department, Faculty of Engineering at Mataria, Helwan University, Cairo, Egypt.

2 Faculty of Electronic Engineering, Menofia University, Egypt Email: shoukralla@el-eng.menofia.edu.eg

3 Basic and Applied Sciences Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Aswan, Egypt

4 Basic and Applied Sciences Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Aswan, Egypt

5 Faculty of Energy and Environmental Engineering, British University in Egypt.


Abstract

This study investigates the contact mechanics of graded coatings, focusing specifically on the early fracture behavior of these materials under rigid flat stamp sliding contact loading. The problem is formulated as a weakly singular Fredholm integral equation of the second kind, in this paper we will utilize shifted Legendre polynomials of the first kind in a matrix-vector format to approximate this integral. The singularity in the kernel is addressed analytically to facilitate the analysis [1]. The primary objective of this research is to derive analytical benchmark solutions that allow us to explore the influence of numerous factors, such as material inhomogeneity constants, the coefficient of friction, and characteristic length parameters, on the critical stresses that may impact the fatigue and fracture behavior of the coatings.

Keywords: The Contact Mechanics of a Flat Stamp Graded Coatings; Fredholm integral equations; Legendre polynomials.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

The National Committee for Mathematics

ETMS

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Securing Sensitive Information AI-Based Encryption Solutions.

Mohammed A. Abdewi, Farouk A. Emara, Ashraf A. Gouda, Mohammed A. Razek

Mathematics and Computer Science Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

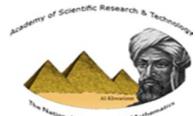
Abstract

Nowadays: Safeguarding information is paramount. With the increasing frequency and sophistication of cyber threats, traditional encryption methods are proving insufficient. Therefore, the integration of AI into encryption solutions presents a promising avenue for enhancing data security. This proposal outlines the implementation of AI-based encryption solutions to safeguard sensitive information effectively.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A fixed point and its asymptotic stability of the solution of a differential equation on the real half-line


MALAK M. S. BA-ALI.

Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract

This research study aims to analyze the solvability of a differential equation in two ways. The first approach involves by applying of Darbo's fixed point Theorem and the measure of noncompactness (MNC) technique, the second approach by using some fixed point theories within the space $BC(\mathbb{R}_+)$.

Moreover, we establish the asymptotic stability of the solution and dependency on the initial data and on the some functions. Additionally, we delve into the study of Hyers-Ulam stability. Finally, some examples are provided to verify our investigation.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

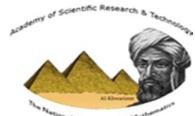
New characterizations of weights on dynamic inequalities involving a Hardy operator “

S. H. Saker ^{1,2} , J. Alzabut ^{3,4} , A. I. Saied ⁵ , D. O'Regan ⁶

1. Department of Mathematics, Faculty of Science, Galala University, Galala New City, Egypt.

2. Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.

3. Department of Mathematics and General Sciences, Prince Sultan University, 11586, Saudi Arabia.


4. Group of Mathematics, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey.

5. Department of Mathematics, Faculty of Science, Benha University, Benha, Benha, Egypt.

6. School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Abstract

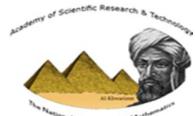
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Arino and Muckenhoupt when $\mathbb{T} = \mathbb{R}$, whereas they contain the characterizations of Bennett–Erdmann and Gao when $\mathbb{T} = \mathbb{N}$.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Nonlinear Rayleigh wave propagation in a thermoelastic structure consisting of a slab sandwiched by two half-spaces in dual-phase-lag

A.A.Youssef¹, N.K. Amein¹, F.A. Salama¹, A.F. Ghaleb², E.A.A. Ahmed³


1-Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia, Egypt.

2-School of Engineering and Applied Sciences, Nile University, Giza 12588, Egypt.

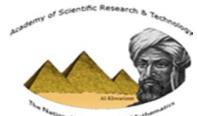
3- Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt.

Abstract

The propagation of nonlinear Rayleigh waves is investigated in a thermoelastic structure consisting of a slab sandwiched between two similar half-spaces within dual-phase-lag. Nonlinearity is induced by the dependence on temperature of the thermal conductivities. The present configuration models a thin interface between two similar media, when the external agents can be neglected. Numerical results are provided and discussed

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


constrained problem of state-dependent differential" equation subject to a state-dependent integral constraint"

Eman Mohammed Mohammed Albarg

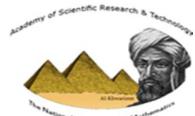
Faculty of Science, Alexandria University

Abstract

Our main objectives in this paper are to investigate the existence of solution of state dependent differential equation with state dependent integral constraint. The uniqueness of the solution and the continuous dependence of the unique solution will be proved. Moreover the Hyres-Ulam stability of our problem will be studied. Some special cases and examples will be introduced

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


On some properties and applications of the fractal derivative

Shaymaa I. Nasim and Ahmed M. A. El-Sayed

Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract

In this paper, we give some properties of the fractal derivative and study some problems of fractal differential equations.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Efficient Line-Search Modified Bat Algorithm for Solving Large-Scale Global Optimization Problem

Enas Omer Mahfouth Suhail


Faculty of Science, Alexandria University

Abstract

An efficient line-search modified bat algorithm (EMBA) is proposed. A balance between exploration and exploitation abilities is achieved by regulating the step of a particle position towards the global optimum. Firstly, a line search to an accurate step size of a particle towards the global optimum is presented. The generated step size depends on the proximity of the particle to the global optimum and it is directly proportional to the dimension of a problem. This proportion makes EMBA capable to handle the high probability of an explosion in the initial values of objective functions in high-dimensional optimization problems. Secondly, the velocity of a particle is clamped within pre-defined boundaries and penalized, if necessary, to make sure that both velocity and position of a particle are within their corresponding boundaries. These modifications combined make EMBA able to converge to the global optimum in few iterations in different-dimensional optimization problems. The performance of EMBA is experimented using several benchmark functions. The numerical results show that EMBA is a strong competitor when comparing with other well-established algorithms.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

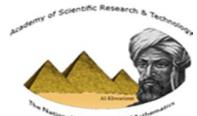
6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

جامعة العلوم والتكنولوجيا الموريتانية

Arab Academy
for Science, Technology & Maritime Transport

Explicit and Implicit Quantum Correlation Dynamics of Qubits Interacting with Thermal Baths

Ahmed A. Zahia ¹, M.Y.Abd-Rabbou ^{2,3}, Ahmed M. Megahed ¹


¹ Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt

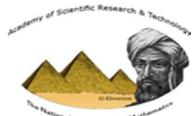
² School of Physics, University of Chinese Academy of Science, Yuquan Road 19A, Beijing, 100049, China

³ Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.

Abstract

This paper investigates quantum entanglement, steering, and Local Quantum Uncertainty (LQU) in a system of two qubits, each coupled to a separate, isolated circular bath modeled as spin-star configurations. Despite no direct inter-bath interactions, significant quantum correlations arise under specific parameter conditions. The study highlights the importance of symmetric conditions and balanced atomic populations for achieving robust steering and strong quantum correlations. Bath coupling enhances atomic entanglement, as quantified by negativity, while deviations reduce correlations. Indirect couplings between baths through the atomic system lead to robust entanglement and steering. LQU analysis shows that balanced conditions minimize uncertainty and strengthen correlations, while imbalances increase LQU. These findings provide insights for optimizing quantum control and enhancing quantum information processing performance.

Arab Academy
for Science, Technology & Maritime Transport

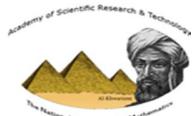

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Analysis of a parametric delay functional differential equation with nonlocal integral condition

Ahmed M. A. El-Sayed, Moamen Osama Radwan *, Hanaa R. Ebead

Abstract

This paper analyzes a nonlocal problem of a delay functional-differential equation with parameters. We confirm that there is at least one solution $x \in AC[0, T]$ to the problem. Furthermore, we provide the hypotheses that must be fulfilled for the solution's uniqueness. The analysis also implements the Hyers-Ulam stability of the problem and the continuous dependence of the unique solution on some parameters. We provide some exceptional cases and examples to illustrate our findings.


Spectral Solutions of Differential Equations via New Orthogonal Polynomials and Special Functions

Author: Youssri Hassan Youssri

Cairo University , Egypt University of Informatics , The American University in Cairo

Abstract

Herein, we introduce innovative spectral techniques for solving various linear and fractional differential equations. Leveraging shifted fifth- and sixth-kind Chebyshev polynomials, we develop novel Galerkin, Tau, and collocation methods tailored to specific problems, including hyperbolic equations, fractional diffusion-wave models, and heat conduction problems. These methods exhibit exponential convergence with minimal computational modes, which makes them ideal for treating fractional problems, even those with non-smooth solutions. Emphasis will be placed on the flexibility and efficiency of the proposed approaches in solving practical problems, demonstrating their advantages over classical methods. The talk will conclude with insights into a fast Galerkin-based solution to the fractional Rayleigh-Stokes problem, showcasing the power of orthogonal polynomials in numerical analysis.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Spectral Collocation Method via Fermat Polynomials for Fredholm-Volterra Integral Equations with Singular Kernels and Fractional Differential Equations

Youssri Hassan Youssri ¹, Mostafa Ahmed Taema ², Mohamed Ahmed Dagher ³


1 Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt, Faculty of Engineering, Egypt
University of Informatics, New Administrative Capital, Egypt

2 Faculty of Engineering, King Salman International University, El-Tur, Egypt

3 Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt., Faculty of Engineering, King Salman International University, El-Tur, Egypt

Abstract

This study presents a new approach to solving integral equations, fractional differential equations (FDEs), and Fredholm-Volterra integral equations with singular kernels. A truncated series of Fermat polynomials is used to approximate the answer, and a quadrature formula is used to discretize the integral. Next, the collocation spectral technique is used to find the unknown expansion coefficients. The suggested approach offers a methodical framework for solving integral equations including difficult single kernels. The correctness and efficiency of the procedure are demonstrated by numerical examples, complemented by comparisons with analytical solutions.

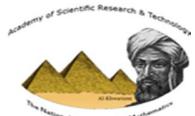
Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A Tau Approach for Solving Time-Fractional Heat Equation Based on the Shifted Sixth-Kind Chebyshev Polynomials

Esraa Magdy Abdelghany ¹ , Waleed Mohamed Abd-Elhameed ², Galal Mahrous Moatimid ¹, Youssri Hassan Youssri ^{2,3}, and Ahmed Gamal Atta ¹

¹Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt


²Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

³Faculty of Engineering, Egypt University of Informatics, Knowledge City, New Administrative Capital, Cairo 11865, Egypt

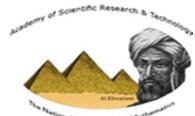
Abstract

The time-fractional heat equation governed by nonlocal conditions is solved using a novel method developed in this study, which is based on the spectral tau method. There are two sets of basis functions used. The first set is the set of non-symmetric polynomials, namely, the shifted Chebyshev polynomials of the sixth-kind (CPs6), and the second set is a set of modified shifted CPs6. The approximation of the solution is written as a product of the two chosen basis function sets. For this method, the key concept is to transform the problem governed by the underlying conditions into a set of linear algebraic equations that can be solved by means of an appropriate numerical scheme. The error analysis of the proposed extension is also thoroughly investigated. Finally, a number of examples are shown to illustrate the reliability and accuracy of the suggested tau method.

Keywords: time fractional heat equation; Chebyshev polynomials of the sixth-kind; tau method; partial differential equations; error analysis

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.



Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel

A. G. Atta and Y. H. Youssri

Abstract

This research apparatuses an approximate spectral method for the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel (TFPIDE). The main idea of this approach is to set up a new Hilbert space that satisfies the initial and boundary conditions. The new spectral collocation approach is applied to obtain precise numerical approximation using new basis functions based on shifted first-kind Chebyshev polynomials (SCP1K). Furthermore, we support our study by a careful error analysis of the suggested shifted first-kind Chebyshev expansion. The results show that the new approach is very accurate and effective.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Hermite-Hadamard inequalities for quantum integrals: a unified approach

Enas M. Shehata

Menoufia University

Abstract

Let β be a strictly increasing continuous function defined on an interval $I \subset \mathbb{R}$.

Hamza et al. introduced the quantum operator $D_\beta g(t) = \frac{g(\beta(t)) - g(t)}{\beta(t) - t}$, $t \neq s_0$, $D_\beta g(s_0) = g'(s_0)$, where s_0 is a fixed point of the function β . For specific choices of β one obtains the known Jackson q -operator, D_q , as well as the Hahn quantum operator $D_{q,w}$. Regarding its inverse operator, the β -integral, we established the corresponding β -Hermite-Hadamard inequalities. Among others, we also obtained the Hermite-Hadamard type inequalities for the Jackson q -integral, the N -integral and for the Jackson-Thomae (or Jackson- N -integral) q, w -integral.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology
The National Committee for Mathematics
Al-Khwarizmi

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة العلوم والتكنولوجيات المائية

Arab Academy
for Science, Technology & Maritime Transport

Multiplicative Frameworks on Fixed Point Theory and Its Applications

Nashat Faried, Sahar Mohamed Ali Abou Bakr, Hany Abd El-Ghaffar and Souhad Salama Almassri

Abstract

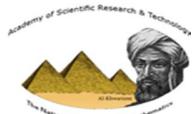
A metric sort distance, convergence structures and some more topological inquiries in multiplicative partial cone metric spaces over Banach algebras are contemplated. We set up the idea for defining these generalizations of metric locations by supplanting the arrangement of Banach space by an arranged multiplicative Banach algebra. In theory of distance spaces, a large body of the framed metric fixed point theorems are not real generalizations. During the axiomatic study of our generalized space, we, undoubtedly, manifest the novelty essence of our fixed point theory approaches. We stretch out Banach's contraction mapping theory for fixed points of contractions to such spaces. Supporting non-trivial counter-example to the main theorem and some illustrative examples are additionally given. One of our results is an exceptionally significant instrument in solving a system of non-linear integral equations.

Mathematics Subject Classification (2010). Primary 47H09; Secondary 47H10.

Keywords. multiplicative partial cone metric spaces over Banach algebras; multiplicative algebra cones; fixed points.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


On a Coupled System of Stochastic Integral Equations of Fractional Orders

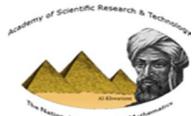
Hanem Farouk Abdelfatah Madkour

Lecturer in Mathematics department, Faculty of Science, Tanta University

Abstract:

In this paper, we study the coupled system of stochastic integral equations of fractional orders. We are concerned with the existence of a unique mean square continuous solution of coupled system of stochastic integral equations of fractional orders. The uniqueness theorem of the solution is proved. As an application, we study the existence of a unique mean square continuous solution for some coupled systems of stochastic differential equations of fractional orders.

Modified bond stress equation of fiber reinforced polymers bars embedded in concrete under uniaxial lateral tensile stresses using numerical analysis


Amr M. Elagamy,*; Mohamed A. Hasan,*; Nabil H. Elashkar

Department of Construction and Building Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Egypt

Abstract

The last two decades have seen substantial advancements in experimental research of bond behaviour of Fiber reinforced polymer FRP deformed bars embedded in concrete. Lack of comprehensive knowledge has been noticed concerning bars bond under confinement cases, which has a significant impact on design specifications. Extensive examination of bonding behaviour of deformed FRP bars embedded in concrete exposed to lateral confinement stress was conducted. This paper proposes numerical analysis finite element model in rib scale, this model implements precise modelling with full geometric characteristics, including the concrete keys in the contact zone and the FRB bar rib reinforcement. The contact method is surface to surface contact with tie limitation are employed to ignore the chemical adhesion between the reinforcement bar and the concrete to prevent separating or sliding between surfaces. Four distinct FRP types were modelled, resulting in a total of 44 case studies. To validate the model, experimental data for both steel bars under confinement stress and FRP bars under pullout conditions were compared. The model exhibited exceptional agreement with these experimental findings. The study revealed a substantial 42% reduction in bond strength due to lateral tensile confinement stress, accompanied by a notable alteration in failure mode. Based on these results, a predictive equation of bond strength of FRP bars under lateral tensile stress is proposed.

Keywords:FRP bars bond behaviour, Pullout test, lateral tensile stress, Nonlinear finite element modelling

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A Comprehensive Evaluation of Machine Learning Models for Pulmonary Diseases Classification

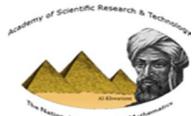
Alhussein M. Abdullah ¹, Mahmoud R. Mahmoud ², Amr M. Omar ³, Mai S. Mabrouk ⁴

¹ Biomedical Engineering Department Faculty of Engineering, Helwan University Cairo, Egypt

² Systems and Biomedical Engineering Faculty of Engineering, Cairo University Cairo, Egypt

³ Center for Informatics Science (CIS) School of Information Technology and Computer Science, Nile University

26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt


⁴ Center for Informatics Science (CIS) School of Information Technology and Computer Science, Nile University

26th of July Corridor, Sheikh Zayed City, Giza, 12588,

Abstract

pulmonary diseases, particularly degenerative conditions such as tuberculosis, sarcoidosis, proteinosis, and fibrosis, pose significant health challenges globally. Early and accurate detection through chest X-ray imaging can substantially improve patient outcomes. Despite advancements in medical imaging and machine learning, there remains a need for robust, high-accuracy models capable of distinguishing between normal and abnormal pulmonary conditions, as existing models often lack the precision and reliability required for clinical application. This study aims to develop and evaluate a comprehensive suite of machine learning models for the binary classification of normal and degenerative pulmonary diseases using chest X-ray images. We utilized a dataset comprising nine categories of pulmonary diseases, focusing on two categories: normal and degenerative pulmonary diseases. Various machine learning algorithms (SVM, KNN, logistic regression, random forest, bagging, adaboost, light GBM, and a stacking model) were deployed. Performance metrics such as recall, precision, F1 score, and accuracy were used to evaluate the models. Among the machine learning models, the stacking model (SVM, KNN, logistic regression) achieved the highest performance with metrics of 99% (recall), 98% (precision), 98% (F1 score), and 98% (accuracy). Logistic regression demonstrated strong performance with an accuracy of 96%, alongside slightly lower precision and F1 scores. The results indicate that advanced machine learning models can significantly enhance the accuracy of pulmonary disease classification from chest X-ray images. The stacking model, in particular, shows promise for clinical application, potentially leading to more reliable and early diagnosis of degenerative pulmonary diseases.

Keywords—pulmonary diseases, sarcoidosis, tuberculosis, chest x-ray, machine learning

Arab Academy
for Science, Technology & Maritime Transport

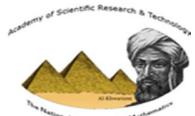
6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Navigating the Risks and Challenges of AI Implementation in Healthcare

Esraa M. Hashem ¹, Mai S. Mabrouk ², Samir.Y. Marzouk ³

¹ Biomedical Engineering Department, Misr University for Science and Technology (MUST University), 6th of October, Egypt.

² Biomedical informatics program, School of Information Technology and Computer Science (ITCS), Nile University, Sheikh Zayed City, Egypt


³ Department of Basic and Applied Science, Arab Academy of Science, Technology, and Maritimes (AASTMT), Cairo, Egypt, Productivity and Quality Institute, Arab Academy of Science, Technology, and Maritimes (AASTMT), Cairo, Egypt.

Abstract

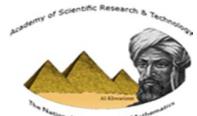
The rapid adoption of Artificial Intelligence (AI) in healthcare presents both opportunities and challenges. While the benefits of this technology are numerous, including increased efficiency, cost-effectiveness, and accessibility, there are also concerns around data privacy, security, and potential biases in algorithmic decision-making. Artificial intelligence (AI) in healthcare has the potential to provide solutions to some of the problems that healthcare systems throughout the world are currently facing. In addition to improving the quality of human life, AI-based technologies are also reported to ensure a safer and more productive work environment. However, there are also significant risks associated with it.

This review aims to explore distinct genres of AI risks prevalent in healthcare by academic articles, categorizing them into three primary areas: technical risks, clinical data risks, and socio-ethical risks. The problem of AI-related risks can be effectively addressed by developing evidence-based approaches that address these challenges. Healthcare leaders and clinical staff will become more effective in implementing AI in healthcare by identifying and addressing the barriers that are preventing its adoption and implementation.

Keywords — Artificial intelligence, healthcare, technical risks, clinical data risks, and socio-ethical risks

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


A Study of Extensions of Classical Summation Theorems For the Series 3F2 and 4F3with Applications

Asmaa O. Mohammed

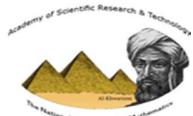
Department of Mathematics, Faculty of Science, Suez Canal University, El-Sheik Zayed 41522, Ismailia – EGYPT.

Abstract

In 2018, Masjed-Jamei & Koepf [Some summation theorems for generalized hypergeometric functions, *Axioms*, 7, 38, doi:10.3390/axioms 7020038] established some summation theorems for the generalized hypergeometric functions. The aim of this talk is to establish extensions of some of their summation theorems in the most general form. As an application, several Eulerian-type and Laplace-type integrals have also been given. Results earlier obtained by Jun et al. and Koepf et al. follow special cases of our main findings.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


On Inverse q-Sturm-Liouville Problems

Fatma Gawish

Faculty of Science, Banha

Abstract

We establish the uniqueness theorems for the Inverse q -Sturm–Liouville problems. The first uniqueness theorem employs the method of transformation operators to provide a q -analog of the Levinson–Marchenko uniqueness theorem. The second uniqueness theorem is a q -analog of the Ashrafyān uniqueness theorem. Therefore, We study the inverse q -Sturm-Liouville problems. In other words, we recovered the potential function of the q -Sturm-Liouville problems from it's spectral data by using an algorithm which is illustrated with an example.

Arab Academy
for Science, Technology & Maritime Transport

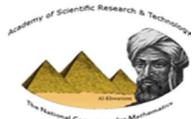
6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

On recent trends of Geometric Function Theory

Mohamed A. Mamon

Department of Mathematics, Faculty of Science, Tanta University.

Abstract


Geometric Function Theory (GFT) is a field of complex analysis that focusses on the geometric properties of harmonic and analytic functions. It is strongly linked to special functions. The application of special functions plays a major role in the GFT approach, as shown by de Branges' proof of the Bieberbach conjecture. This conjecture is a critical topic in the field of univalent functions defined on the open unit disk. This significant event has led to the development of various methodologies for solving problems in GFT and special functions, which play a crucial role in both pure and applied mathematics.

The Taylor-Maclaurin coefficients estimation problem is useful in studying the conformal mapping from a geometric approach; therefore, some recent studies of this problem related to the are shown. In addition, the applications associated with Fekete-Sezgo and Hankel determinant problems are pointed out.

Furthermore, by using the admissible functions approach, the appropriate criteria for starlik- ness, univalence, and convexity as applied to the normalised formula of some special functions are investigated. In addition, the conditions under which these functions could be considered to be close-to-convex relative to certain convex functions are introduced. Finally, the necessary conditions for these functions to be members of the Hardy space H^q are introduced..

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

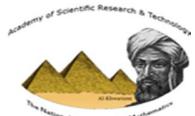
ETMS

Arab Academy

for Science, Technology & Maritime Transport

Artificial Intelligence in Pulmonary Disease Diagnosis: Enhancing Accuracy and Efficiency through Medical Imaging and EHR Integration

Habiba M. ElGohary, Dr. Ahmed F. ElNokrashy, Dr. Mai S. Mabrouk


Center for Informatics Science (CIS), School of Information Technology and Computer Science, Nile University,
26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt.
Hlbrahem@nu.edu.eg, anokrashy@nu.edu.eg, masaid@nu.edu.eg

Abstract

Pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, asthma, pneumonia, and sarcoidosis, pose ongoing health challenges worldwide. Early and accurate diagnosis is essential for effective treatment and improved patient outcomes. In recent years, artificial intelligence (AI) techniques have shown promise in transforming the diagnostic landscape, enhancing the accuracy and efficiency of diagnosing respiratory diseases through the analysis of medical images, spirometry data, and electronic health records (EHRs). This review examines the state-of-the-art applications of AI across various pulmonary diseases, particularly advancements in imaging diagnostics through convolutional neural networks (CNNs) and the integration of diverse datasets to improve diagnostic precision.

Despite these advancements, significant challenges remain, including data quality, model interpretability, and the need for validation across varied populations. Ethical considerations, such as data privacy and algorithmic transparency, are also critical for broader clinical adoption. This review identifies current gaps and suggests future directions, emphasizing the development of explainable AI (XAI), integration of multi-modal data sources, and stronger collaboration between AI developers and healthcare professionals. With continued innovation and thorough validation, AI holds potential to revolutionize pulmonary disease diagnosis, enabling earlier detection, personalized treatment, reduced healthcare costs, and improved patient care.

Keywords: Artificial Intelligence, Pulmonary Diseases, Diagnosis, Electronic Health Records

Arab Academy
for Science, Technology & Maritime Transport

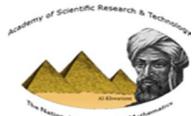
Trends and Innovations in Medical Image Compression Techniques

Yusuf F. Ismail ¹, Ahmed F. ElNokrashy ², Mai S. Mabrouk ³

¹ School of Information Technology and Computer Science, Nile University, 26th of July Corridor, Egypt.

² School of Information Technology and Computer Science, Nile University, 26th of July Corridor, Egypt.

³ School of Information Technology and Computer Science, Nile University, 26th of July Corridor, Egypt.


Abstract

With the exponential growth in diagnostic imaging data, efficient medical image compression techniques have become essential. Traditional methods, such as wavelet-based and object-based models, have shown limited efficiency in handling high-resolution volumetric data and adapting to medical applications. Recent advancements have introduced algorithms leveraging deep learning, hybrid transformations, and adaptive context-driven approaches. New methods like LFC-UNet use neural networks for lossless compression with residual probability estimation, improving efficiency and maintaining processing speeds. Hybrid techniques, combining discrete wavelet transforms (DWT) with steganography, enhance data security and storage. For example, a hybrid model using steganography with the Knight Tour algorithm and DWT improves compression ratios without compromising quality. Adaptive approaches have also been developed for critical scenarios like CT angiography, applying lossless compression to diagnostically relevant regions while compressing less critical areas with higher loss tolerance. New 3D transform methods like the discrete Hartley transform (DHT) offer low-complexity approximations for efficient compression of volumetric data. These advancements have significantly improved the compression and storage of high-resolution datasets, from MRI and CT, enabling targeted preservation of diagnostically relevant features and enhancing applications in telemedicine. Deep learning-based algorithms achieve high compression ratios while preserving diagnostic information, outperforming traditional methods by enabling efficient compression with minimal loss of image quality. Future research should prioritize refining deep learning architectures and exploring hybrid models to optimize compression efficiency and clinical applications.

Keywords: Medical image compression, deep learning, hybrid models, 3D image compression, medical compression.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

Arab Academy

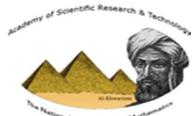
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Diagnosis Of Pulmonary Lung Nodules Based on a Computer Aided Diagnosis (CADx) System

Ayat Karrar 1, Samir Y. Marzouk 2, Mai S.Mabrouk 3

Faculty of Engineering, Cairo University, Giza, Egypt


Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt

School of Information Technology & Computer Science (ITCS), Nile university (NU), Giza, Egypt

Abstract

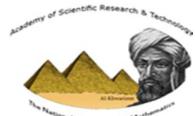
Lung cancer is one of the most serious cancers in the world with the minimal survival rate. Pulmonary nodules may be isolated from (solitary) or adjacent to (juxta pleural) other structures in the lungs such as blood vessels or the pleura. The localization diagnosis of pulmonary nodules enhances the survival rate because it accomplishes diagnostic and therapeutic quality assurance. In this work, a Computer Aided Diagnosis (CADx) system is proposed to classify solitary nodules and juxta pleural nodules in the lungs. Two segmentation techniques, (thresholding + K-means clustering) and (thresholding + morphology) are proposed then a combination of first- order and second-order features are extracted. The higher fifteen ranks of the feature set are selected using the fisher score ranking. Due to the limited and imbalanced data, 10-fold cross-validation and random oversampling are used to achieve a high-performance measure. In the classification stage artificial neural network (ANN) plays an important role in classifying lung cancer tissue. For the diagnosis of juxta pleural nodule, the ANN achieved sensitivity, specificity, accuracy, and AUC of 96 %, 90 %, 93% and 95.8% respectively. This CAD system showed promising results compared to other published studies.

Keywords: Computer-aided diagnosis (CADx), CT scans, K-means clustering, Random oversampling, Artificial neural network.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Strictly two-sided Commutative Quantale


Abdelazeem M. Abdelwahab

Institute of Basic and Applied Science - Collage of Engineering and Technology, Arab academy for science and technology

Abstract

In this paper, we give a comment of the concept of complete residuated lattice [Pavelka (1979), Ying (1993)]. Furthermore, we prove that the concept of strictly two- sided commutative quantale [H'ohle (1999)], Rosenthal (1990)] and the concept of complete residuated lattice are equivalent notions.

Keywords: complete MV- algebra; complete residuated lattice, concept of strictly two-sided commutative quantale

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

The Spatial Distribution of the Critical Fusion Frequency over the Retina

Medhat A. El-Messiery¹, Saleh M. Eisa², Mona A. El Naggar¹

¹Engineering Physics and Math. Dept., Faculty of Engineering (CUFE), Cairo University, 12122, Giza, Egypt

²Department of Electronics & Communication Engineering, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Smart Village, Giza, 12577, Egypt

Abstract

The average value of the critical fusion frequency (CFF) of the human eye is not only essential for the modern technological applications but also to the psychophysics of image recognition. The present work introduces a non-invasive technique that can scan the hemispherical visual field determining the CFF response to either white or monochromatic light sources. The proposed design is an automated one, such that a 3-D retinal scan is produced, hence obtaining a retinal spatial distribution over the retina (RSD) of the CFF. It implements ALTERA FPGA Cyclone IV DE2-115 board. The produced data is electronically stored, analysed and plotted. The results obtained, show that the CFF for the white light source; is almost independent on the image location on the retina. On the other hand, the CFF values of monochromatic sources namely (red, green and blue) show strong dependence on the spatial position of the image on the retina. The dependence of CFF on the gender is insignificant while the its average values drop significantly with age.

Keywords: 3-D retinal scan, critical fusion frequency (CFF), CFF measurement, chromatic effect, mechatronic device, retinal spatial distribution (RSD), field programmable gate array (FPGA).

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

The National Committee for Mathematics

ETMS

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Diffusion coefficient of 3d growth of tumor cells

Medhat M. El-Messiery and *Amina M. Saker,

Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza, Egypt 12613

Abstract

In the present work the problem of biological cellular growth is studied as a Diffusion Process. Despite of the differences between the diffusion mechanism of living cells and other phases of matters yet both of them are a random walk process.

The present work introduces a computer model simulating the growth of biological cells in a nutrient media considering the stochastic nature of the growth. employed to simulate a virtual model of cell growth. The model follows the actual cytokinetics rules of normal growth. Hence the diffusion coefficient of normal and tumor cells was calculated as a function of time and loss factor.

The present work aims is to build a realistic 3D computer simulation model of tumor growth which helps in examining the method of tumor growth, also clarifying the role of different factors affecting the cell kinetics of normal and tumor growth. The goal of the model is to calculate the biological diffusion coefficient which indicates the cells growth rate

Performing this task cell-cycle computer simulation model for living cells has been developed. Moreover, rules describing the cell-cell interactions have been formulated for both normal and tumor cells.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A proper mathematical model for cardiac electrical activities

Hesham A. Elkaranshawy, Hala H. Masry Mohamed, and Hanaa M. Elabsy

Department of Engineering Mathematics and Physics, Alexandria University, Alexandria, Egypt


Abstract

Cardiac diseases are a major health concern in modern society. Taken together, they represent the first leading cause of death worldwide. Mathematical models of cardiac electrophysiology are important in understanding real processes taking place in healthy and diseased hearts. In this paper, a proper mathematical model for cardiac electrical activities in the form of a system of nonlinear ordinary differential equations is developed. The model can capture the dynamics of the electrical conduction system for the human heart, including main pacemakers and heart muscles. The electrocardiogram (ECG) as a combined signal of atrial and ventricular muscles is formed. To illustrate the accuracy and the effectiveness of the suggested model, synthetic ECGs for normal and for many pathological rhythms are acquired. Simulation results are compared with normal and pathological ECGs. The model can explain the key processes that contribute to the generation of the ECG waveform. It is believed that this model provides a valuable approach for revealing physiological insight.

Keywords. mathematical model, heart dynamics, cardiac electrical activities, Van der Pol oscillator, Aliev-Panfilov equations

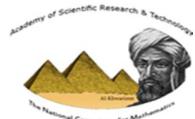
أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

Microbiome Biomarkers and Breast Cancer: A Machine Learning Approach


Habiba Aly, M S. Mabrouk, Mohamed Mysara*

Bioinformatics Research Group, Center for Informatics Science (CIS), School of Information , Technology and Computer Science, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt.

Abstract

Breast cancer is one of the most common diseases affecting women globally and significantly contributes to mortality rates worldwide, with risk factors including genetic mutations, family history, age, obesity, breastfeeding habits, and lifestyle choices. Recent research highlights a strong association between the microbiome and various cancers, particularly breast cancer. Microbial dysbiosis, defined as imbalances in the microbial community within the breast tissue has been linked to carcinogenesis, cancer progression, and treatment outcomes. Studies have identified distinct microbiome compositions in healthy individuals compared to those with breast cancer. Thus, characterizing the exact microbial players implicated with breast cancer is of utter importance. Machine learning techniques has long been used in breast cancer research, enhancing predictions for recurrence, diagnosis, prognosis, treatment response and personalized treatment. In this study, a machine learning application is presented for breast cancer, employing a classifier based on microbiome biomarkers to differentiate between breast cancer (BC) samples and controls. Two independent studies were utilized to train and validate the classifier, further elucidating the main microbial species associated with breast cancer. The model's ability to predict sample type based on microbiome abundance was demonstrated.

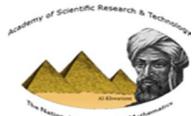
Keywords Breast cancer, Tissue microbiome, Tissue biomarker, Machine learning, Prediction

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Thermocapillary Velocities of a Spherical Droplet Embedded in Brinkman Medium

A.S.Aamer


Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract

An analytical study is presented for thermocapillary migration of a spherical fluid droplet embedded in a porous medium. The porous medium is assumed to be homogeneous, isotropic and the solid matrix is in thermal equilibrium with the fluid through the voids of the medium. A constant prescribed temperature gradient parallel to an adiabatic plane is maintained in the porous medium. The Peclet number is assumed to be small, so that the temperature distribution is governed by Laplace equation. Also, Reynolds number is assumed to be small so that the fluid flow inside the droplet is described by Stokes equation and the flow inside the porous medium is described by Brinkman equation. Expression for thermocapillary velocities and forces are obtained. The effect of the Brinkman number characterizing the permeability of the medium is investigated as functions of the thermal properties of the porous medium and droplet. The limiting cases of Stokes and Darcy's flows are discussed.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy

for Science, Technology & Maritime Transport

On Entangling power of quantum information

M. Kh. Ismail¹‡, L. E. Thabet², T. M. El-Shahat¹, N. Metwally^{3,4} and A.-S. F. Obada⁵

1 Math. Dept., Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.

2 Applied College, Al-Mahd Branch, Madina, Taibah University. Kingdom of Saudi Arabia


3 Math. Dept, Faculty of Science, Aswan University, Aswan, Egypt.

4 Department of mathematics, college of science, university of Bahrain, Bahrain.

5 Math. Dept., Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract

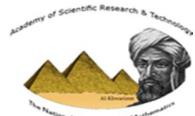
The capability that Anti-Jaynes-Cummings model (AJCM) to generate quantum correlation between finite and infinite dimensional subsystems has investigated. This idea has clarified by assuming that an atom with different dimensions interacts with a cavity mode prepared in different initial states. It has been shown that, entangling power of the AJCM and consequently the entanglement can be maximized if the cavity mode, which is prepared in a coherent or squeezed vacuum states, interacts locally with a three or four dimensional atom. By increasing the mean photons number inside the cavity, the entangling power and the amount of entanglement between the subsystems can be improved. There is a harmonious behavior between the entangling power and the entanglement measure, where the sudden /gradual and constantly behaviors have predicted at the same interaction time. Keywords: Two level atom, Three-level atom, Four-level atom, Entangling power, Anti-Jaynes-Cummings Model.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Structural assessment of historical masonry structures using various strengthening techniques

Nermene Ashraf Shawky ¹, Khaled Farouk El-Kashif ², Nabil Amer ¹


¹ Construction and Building Engineering Department, College of Engineering and Technology, Arab Academy for Sciences, Technology and Maritime Transport (AASTMT), B2401 Smart Village, Giza 12577, Egypt

² Structural Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt

Abstract

Structural analysis of heritage buildings is essential to recognize their true characteristics and to ensure their conservation against deterioration over time. The improvement in accuracy in the geometric survey operations is essential to obtain accurate results. This paper presents an assessment of the Wikala of Sultan Qaytbay by following a structural global analysis approach for performance evaluation of the building due to lateral displacement of walls. In this respect, the building was surveyed using laser scan to obtain exact geometries then studied by using finite-element analyses. The building was subjected to a 2 cm out-of-plane displacement in order to determine the global structural behavior and to avoid localized effects. FRP strips, shotcrete, and steel plates were the chosen strengthening techniques in relation to their impact on global stability, the structural performance of the building and the distribution of loads within the structure. It can be seen from the analysis that global repair strategies which in this case involves the use of steel strips has the highest enhancement of the toughness and stiffness of the structure. Shotcrete and FRP also increased the absorbed energy of the building.

Keywords Heritage Buildings; 3D laser scan; masonry walls; FEM; displacement; strengthening

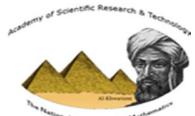
Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Reliability characteristics and estimation of parameters based on censored model data to extended Gompertz distribution with application

N. Abozeid¹, M. M. Nassar², S. E. Abu – Youssef³, R. M. EL – Sagheer^{3,4}

1Department of Mathematics, Faculty of Engineering, German University in Cairo, Cairo, Egypt


2Department of Mathematics, Faculty of Science, Ain-Shams University, Cairo, Egypt.

3Mathematics Department, Faculty of Science, Al-Azhar University, Naser city 11884, Cairo, Egypt.

4High Institute of Computer and Management Information System, First Statement, New Cairo 11865, Cairo, Egypt.

Abstract

This article explores the estimation of parameters and lifetime indices of the extended Gompertz distribution under progressively Type-II censored schemes. The study employs maximum likelihood, Bayes, and two parametric bootstrap methods for parameter estimation, alongside the computation of reliability and hazard rate functions. Additionally, approximate confidence intervals and an asymptotic variance-covariance matrix are derived. The Markov chain Monte Carlo technique, specifically the Gibbs sampler within the Metropolis-Hastings algorithm, is utilized to generate samples from posterior density functions. Bayesian estimates are computed using both symmetric and asymmetric loss functions. Through Monte Carlo simulations, the efficacy of these methods is evaluated using metrics such as mean squared errors, average interval lengths, and coverage probabilities. Finally, a real dataset is analyzed to demonstrate the practical application of the developed inferential procedures.

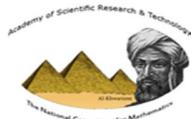
Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode

Dawlat Sameh Ali

Arab academy for science and technology


Abstract

Fetal arrhythmia is an abnormal heart rhythm caused by a malfunction with the fetal heart's electrical system.

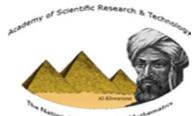
Monitoring fetal ECG is crucial for providing valuable information about the fetus's status. Acute fetal arrhythmia can cause cardiac collapse or death. Therefore, early diagnosis of fetal arrhythmia is crucial. Current methods for obtaining the mother's abdominal ECG use many electrodes, which might be irritating. ECG signals might be difficult to extract because of noise and artifacts from breathing and muscle contractions.

This work develops a machine learning approach for detecting fetal arrhythmias. The model suggested utilizes just one abdominal ECG. It includes a variety of filtering algorithms to eliminate noise and artifacts. It also extracts a number of essential properties from other domains, including time and time-frequency.

Finally, the method employs four machine learning classifiers to detect arrhythmia.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.



Synthesis of Azolo-Transition Metal Complex Films Doped with Polyvinyl Alcohol and Assessment of Their Thermal and Optical Properties

Mona M.Khalil, E.F. Wanas

Abstract

This study presents the synthesis of azo-transition metal complex films doped with polyvinyl alcohol (PVA) through a casting method, yielding two samples with distinct properties. The chemical composition of the samples was characterized by Energy Dispersive X-ray Spectroscopy (EDX), while thermal properties were assessed using Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA). Additionally, the electrical and dielectric properties of the films were examined over a frequency range of 100 Hz to 100 kHz and a temperature range of 300 K to 460 K. This work highlights the films' suitability for light management in renewable energy and optoelectronic applications, combining thermal stability, tunable optical properties, and complex dielectric behavior.

Experimental Study on Concrete Performance under Partial Replacement of Normal Coarse Aggregate by Sand-Light Stone

Toka Waleed ¹, Mohammed Rady ^{1,*}, Ibrahim Mohsen Mashhour ¹ and Mohammed El-Attar ²

¹ Arab Academy for Science, Technology and Maritime Transport (AASTMT), B 2401 Smart Village, 12577, Egypt

² Department of Structure Engineering, Faculty of Engineering, Cairo University, Egypt; attar.2007@hotmail.com

Abstract

Lightweight concrete has been widely used due to its precious characteristics. It has many applications according to its strength. For instance, it can be used as an insulating material, for soundproofing and fireproofing, bridge decking, and casting structural elements. In this paper, crushed sand-light stone (SLS) was used as a coarse aggregate to produce structural lightweight concrete mixtures. Crushed sand-light stones have partially replaced normal coarse aggregate by 50% in two concrete mixtures. As lightweight aggregates are considered a porous material, they absorb water according to the absorption percentage of each type of lightweight aggregate. In addition, normal weight concrete (0% of lightweight coarse aggregate) functioned as a control mix. To determine the performance of normal weight aggregate and lightweight aggregate, the mechanical properties were examined through sieve analysis, specific gravity, bulk density, and water absorption tests. Furthermore, the compressive strength was tested for the three concrete mixtures after 3 days, 7 days, 28 days, respectively, to assess its suitability for producing structural lightweight concrete. Based on the test findings, lightweight concrete using sand light stones as a lightweight aggregate to the concrete did not achieve the constraints for being structural lightweight concrete and could not be used in structures or buildings.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Novel Wrapped Distribution and its application

Mohamed AbdElaal Mustafa ElQurashi

Abstract

This study introduces the wrapped Monsef distribution, a unique circular distribution characterized by a single parameter derived from the wrapping method. We look at how changing the values of the parameters affects the density function and come up with formulas for its characteristic function, trigonometric moments, and other useful descriptive metrics. Maximum likelihood estimation is the method used to estimate parameters. We performed a simulation analysis to illustrate the reliability of the generated maximum likelihood (ML) estimator. The proposed model is additionally evaluated using two real-world datasets. Its performance can be compared with that of the wrapped weighted exponential distribution. Contained within Lindley's exponential distribution, A new wrapped exponential distribution and a wrapped exponential distribution

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A New Local Fractional Derivative with Applications

Sroor M. Elnady¹, Mohamed El-Beltagy¹, Ahmed G. Radwana,² Mohammed E. Fouda^{3,*}

¹ Engineering Mathematics and Physics Dept., Faculty of Engineering, Cairo University, Egypt


² School of Engineering and Applied Sciences, Nile University, Giza, Egypt.

³ Compumacy for Artificial Intelligence Solutions, Cairo, Egypt.

Abstract

In this paper, we introduce a new local fractional derivative (NLFD), establishing a refined framework for local fractional calculus. This derivative is formulated to uphold classical properties of integer-order calculus, including linearity, the product rule, and the quotient rule. We rigorously demonstrate that the NLFD satisfies fractional extensions of both Rolle's theorem and the mean value theorem, underscoring its mathematical robustness and compatibility with foundational calculus principles. The proposed definition provides a unique fractional derivative applicable without violating essential conditions. To illustrate its practicality, we apply the NLFD to solve fractional linear ordinary differential equations (FLODEs) in an RC electrical circuit model. Additionally, we use the NLFD to analyze the Chaotic Fractional Liu System (CFLS). Our findings reveal that the NLFD not only serves as a powerful modeling and analysis tool in these domains but also broadens the scope of potential applications in modern fractional calculus.

Keywords: Fractional calculus, Local fractional derivative, Conformable FD, MFD, Beta FD, Deformable FD, Fractional order ODEs, Chaotic systems.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

CFD Modelling for Air Distribution Systems in Industrial Control Room

Salah Samy^{1*}, Micheal A. William², Mohamed Shawki³, Aly M. Elharidi¹, Ahmed A. Hanafy¹

1Mechanical Engineering Department, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt.

2Mechanical Engineering Department, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Smart Village Campus, Egypt.

3Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Egypt.

Abstract

Maintaining optimal environmental conditions is crucial for the efficient and reliable operation of industrial control rooms, where high heat loads from equipment can cause temperature imbalances. This study evaluates and compares the performance of three air distribution methods ceiling, wall mounted, and underfloor used to maintain thermal conditions in accordance with ASHRAE Thermal Guidelines for Data Processing Environments [1,2]. The study was conducted in a control room at an industrial plant located in Alexandria, Egypt. Using Computational Fluid Dynamics simulations via DesignBuilder V7 software [3], temperature distributions were assessed at supply air temperatures of 12°C, 14°C, and 16°C. The results indicate that both wall mounted and underfloor air distribution systems at 16°C offer superior cooling compared to ceiling air distribution at 12°C. Wall mounted air distribution at 16°C showed an 11% improvement in cooling air distribution efficiency, achieving an average room temperature of 22.06°C and a maximum of 27.34°C. The underfloor system at 16°C demonstrated a 7% improvement. Based on these findings, wall mounted air distribution at 16°C is recommended for industrial control rooms, as it provides better performance, ensures compliance with ASHRAE Thermal Guidelines [1,2], and offers a safety margin to protect equipment from overheating.

Keywords: Temperature control; CFD; Energy efficiency; control rooms; Air distribution systems

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

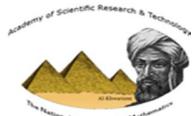
ETMS

Arab Academy
for Science, Technology & Maritime Transport

The Vibration of Nano Resonators Based on The Theory of Two-Temperature Green-Naghdi Thermoelasticity Under Consideration of Thermomass Motion

Nasser M. EL-Maghraby¹, Haitham Atef², Mahmoud M. Abdelraouf¹, Hamdy M. Youssef³ and Alaa. A. El-Bary¹

¹Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport , Egypt.


²Mathematics Department , Faculty of Science, Damanhur university, Egypt

³ Mechanical Engineering Department-College of Engineering and Architecture-Umm Al-Qura University-Makkah 21955-Saudi Arabia

Abstract

In this paper, a new model of a nanobeam of silicon nitride in the context of the generalized thermoelasticity of Green-Naghdi theory based on thermomass motion has been applied. Ramp-type heat conduction is thermally loaded on a simply supported thermoelastic nanobeam. The governing equations of the model have been constructed and solved by using the Laplace transform domain. The inversions of the Laplace transform have been calculated by using Tzou's iteration method. The numerical results have been represented in figures to stand on the effects of the drift velocity, and ramp-time heat parameters on the vibration of the nanobeam. The drift velocity and ramp-time heat parameters have significant effects on the vibration, deformation, stress, and energy density functions.

Keywords: Nanobeam; Green-Naghdi; Thermomass Motion; Drift velocity; Ramp-Type Heat.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

The Vibration of Nano Resonators Under the Theory of Two-Temperature Generalized Thermoviscoelasticity Based on Thermomass Motion

Nasser M. EL-Maghraby¹, Haitham Atef², Mahmoud M. Abdelraouf¹, Hamdy M. Youssef³ and Alaa. A. El-Bary¹

¹Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport , Egypt.

²Mathematics Department , Faculty of Science, Damanhur university, Egypt

³ Mechanical Engineering Department-College of Engineering and Architecture-Umm Al-Qura University-Makkah 21955-Saudi Arabia

Abstract

In this paper, a new model of a nanobeam of silicon nitride in the context of the generalized thermoviscoelasticity theory based on thermomass motion is applied. Ramp-type heat conduction is thermally loaded on a simply supported viscothermoelastic nanobeam. The governing equations have been constructed and solved in the Laplace transform domain. The numerical results have been represented in figures to show the effects of the mechanical relaxation time, drift velocity, and ramp-time heat parameters on the vibration of the nanobeam. Mechanical relaxation time has a significant impact on the mechanical wave. Moreover, the drift velocity and ramp-time heat parameters have significant effects on all the studied functions.

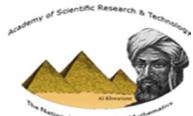
Keywords: Nanobeam; Silicon Nitride; Thermoviscoelasticity; Thermomass Motion; Drift velocity; Ramp-Type Heat.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Behavior of reinforced concrete columns repaired by steel jackets filled with different types of concrete

Mahmoud Ahmed M.Amin ¹, Mahmoud Mostafa El Hawary ², Ahmed Shaheen ², Ibrahim M.Mashhour ¹


1 Construction and Building Engineering Dept., College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Egypt.

2 Construction Engineering Dept., College of Engineering and Technology, Misr University for Science and Technology, Egypt.

Abstract

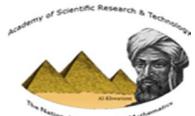
Reinforced concrete (RC) columns are essential structural components in buildings and infrastructure, providing vertical load support and stability. However, over time, these columns can undergo degradation due to various factors, such as environmental exposure, seismic events, and increased loading demands. As a result, the need for effective and reliable column strengthening techniques arises to ensure the safety, durability, and longevity of structures. The main objective of this study is to investigate how fully strengthening damaged columns affects load-bearing capacity and overall structural performance. This study looked into how well short steel jackets worked. The experimental program will test thirteen reinforced concrete (R.C.) columns. The original dimensions of these columns were 150 * 150 * 1200 mm. One specimen served as a control, while the remaining twelve underwent strengthening and enlargement to measure (250 * 250 * 1200) mm. These specimens varied in stirrup spacing, reinforcing materials such as glass fiber and reinforced steel rebar, and concrete compressive strengths. The main parameters analyzed were the load bearing capacity ratio, strain characteristics, and buckling. In the end, the experimental results were examined, contrasted, and showed enhancements on RC columns. The National Research Centre for Housing and Building is in charge of producing and hosting this initiative.

Keyword: Concrete; Steel jackets; Repaired; Reinforced; Columns

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Theoretical Investigation of Electrokinetic Flow in a Microtube Using Micropolarity, Slip Conditions, and Electrical Double Layer Dynamics


E.F. Wanás

Institute of Basic and Applied Science, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.

Abstract

This paper presents a theoretical analysis of the electrokinetic flow of micropolar fluids within a circular microtube using the Eringen micropolar fluid model. The study uses a linear Poisson-Boltzmann equation and the Debye-Hückel approximation for small Zeta potentials to investigate how velocity and spin velocity on the surface of microtubes affect fluid flow and energy transport. The main physical quantities, such as volume flow rate, flowing potential, and flowing current, are calculated to show how micropolar properties and sliding conditions influence electrokinetic interactions and liquid transport. Further analysis of cut-up stress and viscous dispersion reveals energy losses in the system, whereas energy transport efficiency quantifies the impact of micropolar effects. Furthermore, the study looks into how Debye length and electrical double layer (EDL) overlap influence flow behaviour, combining theoretical insights with existing literature data. The graphic analysis of parameter variations emphasizes the importance of micropolarity, slip conditions, and EDL dynamics in shaping microtube flow and energy transport properties.

Key words: Electrokinetic, Micropolar fluid, Slip and spin slip, Microtube, Electrical double layer (EDL).

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


Stress-Strength Reliability of Monsef Distribution for Modeling

Mohamed AbdElaal Mustafa ElQurashi

Arab Academy for Science, Technology and Maritime Transport, Egypt

Abstract

The investigation of the reliability of any component tested in the field of life model is a challenge. Without a doubt, one of the most critical concerns is "stress "s" strength "S" reliability". This paper aims to discuss how the stress-strength coefficient $R = P(Y < X)$ from any statistical literature Can be estimated. System reshaping is subjected to a random force X in such a way that the system fails if the stress exceeds the force. The reliability of stress resistance is examined in this study when force X has a Monsef distribution "**ME**" and stress $(Y_1, Y_2, Y_3, Y_4, Y_5, \text{ and } Y_6)$ has an **ME** distribution, Lindley distribution "**Lin**", a Rayleigh distribution "**Ray**", Exponential distribution "**Exp**", Half-Normal distribution "**HN**" and Rayleigh Half-Normal distribution "**RHN**" respectively. Explicitly obtaining the maximum probability estimator for the unknown parameter is also possible. Additionally, the maximum likelihood estimation of "**MLEs**" asymptotic distribution obtained which can be used to construct a confidence interval for R . The proposed model is compared with other existence models using simulations, and an illustrative data analysis was performed. Finally, we determined that the maximum product of the spacing method yielded the best results.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Enhanced Separation Efficiency and Reduced Pressure Drop in Multi-Inlet Cyclone Separators: A Computational Fluid Dynamics Study

Ziad A. Abouelseoud^{1,*}, Yasser El-shaer¹, Khairy Elsayed²

¹ Mechanical Engineering Department, College of Engineering and Technology Smart Village Campus, Arab Academy for Science, Technology & Maritime Transport, Giza, Egypt.

² Mechanical Power Engineering Department, Faculty of Engineering-Mataria, Helwan University, Egypt

*Corresponding author E-mail address: ziad.abouelseoud@aast.edu

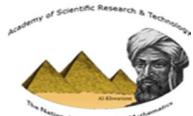
Abstract

Multi-inlet separators provide many advantages over single-inlet designs. The present work develops Computational fluid dynamics (CFD) simulations using the Reynolds stress turbulence model (RSM) to study the multi-inlet cyclone separator flow field and provide insights into the mechanisms that lead to the separation of particles. The effect of different inflow rates on separation efficiency and pressure drop is investigated. The findings demonstrate that multi-inlet setups yield reductions in pressure drops and offer a smaller cut-off diameter, both of which can promote the separation of particles, especially from the finer ones. The cut-off diameter decreased from $1.53\mu\text{m}$ for the single inlet to $1.49\mu\text{m}$ for the multi-inlet optimal design configuration. Analysis shows a reduced number of recirculation zones and more uniform distribution of flow in the case of the multi-inlet design in comparison to the single-inlet case. The results highlight that multi-inlet cyclone separators have great promise for realizing enhanced cyclonic performance across different industrial settings of relevance. Directions for future research are optimizing inlet configurations, further study of particle-laden flows with non-spherical particles, and experimental validations of CFD simulations to enhance the design and operation of these simple and efficient separation devices.

Keywords: Multi-inlet cyclone separator, Computational fluid dynamics simulations, Reynolds stress turbulence model (RSM), Discrete phase modeling, Performance metrics (collection efficiency and pressure drop)

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


The effect of moving heat source in DPL model on viscoelastic biological tissues during thermal treatment applications

Ibrahim A. Abbas and Aboelnour N. Abdalla, Abdelrahman A. Abbas

Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt.

Abstract

The moving thermal source of the constant heat is analyzed mathematically in this study in terms of biological heat transfer in elastic skin tissues, which have different delay times and adhere to the Dual-Phase-Lag (DPL) thermal conduction model. One needs to comprehend the heat transfer mechanisms as well as thermal-mechanical interactions to perform thermal treatments optimally. This is an area that remains under-researched despite the significance of different parameters on thermal delay times. Therefore, the influence of those parameters upon displacement, temperature distribution, and thermal stresses in living tissues is studied. With the help of Laplace transforms, a more precise estimation of these distributions and their graphical representation aimed at improving treatment results via a better understanding of the behaviour of living tissues in a thermal environment is achieved.

Comparing Different Fractional-Order Response for Lorenz Chaotic System

Massoud M Aboukhalaf ¹, Sroor M. Elnady ¹, Mohamed El-Beltagy ¹, Ahmed G. Radwana, ², Mohammed E. Fouda ³.

1 Engineering Mathematics and Physics Dept., Faculty of Engineering, Cairo University, Egypt

2 School of Engineering and Applied Sciences, Nile University, Giza, Egypt.

3 Compumacy for Artificial Intelligence Solutions, Cairo, Egypt.


Abstract

The paper presents a comparative study of two fractional derivative definitions applied to the Lorenz chaotic system: the Grunwald-Letnikov (GL) derivative with a singular kernel and the Caputo-Fabrizio (CFG) derivative with a non-singular Gaussian kernel. By implementing both fractional derivatives within the Lorenz system framework, we explore their effects on system dynamics, focusing on the distinct behaviors induced by the singular and non-singular kernel characteristics. Numerical simulations highlight differences in stability, convergence, and chaos intensity under each derivative type, revealing insights into the roles of kernel properties in fractional chaotic systems. This comparison provides a foundation for selecting appropriate fractional derivative formulations in complex dynamical system modeling.

Keywords: Fractional Derivatives, Chaotic Systems, Lorenz System, Singular Kernel, CFG

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology
The National Committee for Mathematics

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Parameter estimation and lifetime analysis of the power-modified kies-exponential distribution under progressive Type-II censoring with application

Fatma N. Fouad¹, Manal M. Nassar¹, Shaaban I. Abu-Youssef², Rashad M. EL-Sagheer³

¹Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

²Mathematics Department, Faculty of Science, AL-Azhar University, Nasr City 11884, Cairo, Egypt

³High Institute of Computer and Management Information Systems, First Statement, New Cairo 11865, Cairo, Egypt

Abstract

This paper focuses on estimating parameters for the power-modified Kies-exponential distribution and various lifetime indices, such as reliability and hazard rate functions, under progressive type-II censoring. It explores the use of maximum likelihood, two-parametric bootstrap, and Bayesian methods for estimating these parameters and characteristics. The study constructs approximate confidence intervals and highest posterior density credible intervals using the asymptotic distribution of maximum likelihood estimators and the Markov chain Monte Carlo technique respectively. Additionally, the delta method is employed to calculate variances for reliability and hazard functions, and two bootstrap methods are used to create confidence intervals. Bayes inference is derived using squared error loss functions. Finally, extensive simulation studies are conducted to assess the performance of these methods and provide a real data analysis to demonstrate their practical application.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

The National Committee for Mathematics

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.


A Multi-Objective Interference Control Framework for Energy-Efficient IoT-Cellular Networks in 5G

Radwa Ahmed Osman Mohamed and Nourhan Mamdouh

Associate Professor at Arab Academy for Science, Technology and Maritime Transport

Abstract

The Internet of Things (IoT) represents a transformative model for enabling extensive connectivity among machines and devices within future communication networks, enhancing our awareness of the world and improving daily life. IoT devices (IoTDs) connect to an IoT base station (IoTBS) or IoT gateway (IoTG) by utilizing the resources of other cellular users (CUEs). However, due to spectral efficiency loss, interference arises between IoTG and base station (BS) caused by interactions among CUEs and IoTDs. This paper introduces a novel framework, the interference control model, which aims to manage interference between IoTG and BS by employing a hybrid particle swarm optimization algorithm. This approach reduces interference while maximizing energy efficiency and reliability in IoT and cellular networks within fifth-generation (5G) systems. Initially, we formulate a multi-objective optimization problem to guide the proposed model's objectives. Based on this optimization strategy, we derive closed-form expressions for key quality-of-service (QoS) metrics, including system reliability, throughput, and energy efficiency. Finally, we evaluate the proposed algorithm through various assumptions and simulation scenarios. The results demonstrate the effectiveness and accuracy of our proposed model, highlighting notable improvements in the performance of IoT and cellular networks.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Enhancing AV2X Network Efficiency: An Adaptive Model Based on Hybrid Particle Swarm Optimization

Radwa Ahmed Osman Mohamed and Nourhan Mamdouh


Associate Professor at Arab Academy for Science, Technology and Maritime Transport

Abstract

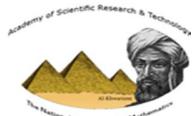
Recent autonomous intelligent transportation systems increasingly rely on vehicular communication. Efficient communication between autonomous vehicles and everything (AV2X) is essential to ensure road safety by reducing traffic congestion, providing emergency vehicle alerts, and aiding in low-visibility conditions. This paper proposes a new adaptive AV2X model that utilizes a hybrid particle swarm optimization algorithm to improve the connectivity of vehicular networks. The model optimizes the positioning of inter-vehicles to facilitate direct communication with autonomous vehicles (AVs) or to relay information across the network. Based on the system's quality-of-service (QoS), a decision is made on whether the transmitting AV communicates directly with the destination or via cooperative communication. To meet these objectives, the optimal positioning of the relay vehicle is mathematically formulated as a constrained optimization problem to enhance AV2X communication under various environmental conditions. The effectiveness of the proposed model is demonstrated by considering factors such as vehicle distribution, density, mobility, and speed. Simulation results show that the proposed model outperforms previous models, improving system performance in terms of throughput (S), packet loss rate (PLR), packet delivery ratio (PDR), and average delivery latency (DL).

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport


Cluster Head Selection Algorithm Using PSO

Eng. Ahmed Gouda:

Arab for Science, Technology & Maritime Transport

Abstract

One of the best methods for reducing the energy consumption of wireless sensor networks (WSNs) is the clustering. However, because of the extra effort required to receive and aggregate data from their member sensor nodes and send the aggregated data to the base station (BS), cluster heads (CHs) in a hierarchical cluster-based WSN use more energy. As a result, choosing the optimum CHs is essential to preserving sensor node energy and extending WSN lifetime. In this paper, we proposed a cluster algorithm for selecting cluster head based on the particle swarm optimization (PSO). The objective function of selecting the optimum CHs is depending on many parameters distance between CHs and ordinary nodes in their cluster, distance between CHs and BS, residual energy of each CH, node centrality, and node degree. Each node select its cluster depending on the potential function based on node degree, residual energy, and two terms of distance. Comparing our proposed model with various approaches for measuring performance depending on various metrics.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Stochastic Process of Magneto-photo-Thermoelastic Waves in Semiconductor Materials with the Change in Electrical Conductivity

Kh. Lotfy¹, Abdelaala Ahmed¹, Alaa A. El-Bary², Ramdan. S. Tantawi¹, and Eslam S. Elidy¹

¹Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.

²Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt

E-mail: abdoahmed199590@gmail.com; aaelbary@aast.edu; ramadan_tantawi1@yahoo.com;

eslamelidy@yahoo.com.


Abstract.

The main aim of this work is to use photo-thermoelasticity theory to investigate the stochastic type plasma-mechanical-elastic distribution at the boundary of an elastic half-space in a semiconductor medium. The stochastic simulation was introduced to a two-dimensional (2D) electromagnetic problem using the electron-hole interaction model. Taking into consideration the varied thermal conductivity parameter and the electrical conductivity which is dependent on the temperature. The simulation was carried out using a silicon (Si) material. As white noise is more common than others, it was chosen to be the basic function of randomness. The normal mode analysis technique is employed to obtain comprehensive deterministic and stochastic wave behavior of all main physical variables under consideration for short times. The procedure entails producing three distinct trajectories to estimate the difference between the stochastic and deterministic distributions. The results of the study were numerically analyzed and represented graphically.

Keywords: Stochastic process; Magnetic field; Electrical conductivity; White noise; Thermal conductivity; Photo-excitation.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

A Novel Hydrodynamic Semiconductor Model under The Magnetic Field Effect and Laser Pulses

Azza M.Algatheem¹, Alaa A. El-Bary^{2,3,4},Khaled Lotfy^{5,6}

1 Department of Mathematics , Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia

2Arab Academy for Science, Technology and Maritime Transport , Egypt.

3National Committee for Mathematics, Academy of Scientific Research and Technology, Egypt

4Council of future studies and risk management, Academy of Scientific Research and Technology, Egypt

5Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box44519, Zagazig, Egypt.

6Department of Mathematics, College of Science, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah, 30002, Saudi Arabia

E-mail Azahm@ub.edu.sa; aaelbary@aast.edu; khlotfy_1@yahoo.com

Abstract

This study explores the influence of an external magnetic field on a hydro-elastic semiconductor model based on the framework of photo-thermelasticity theory in two dimensions (2D). The research aims to understand how the magnetic field affects the coupled interactions between thermal, mechanical, and electronic fields in a fluid-saturated porous-silicon semiconductor. By applying normal mode analysis, the governing equations for wave propagation are derived, and the behavior of non-dimensional temperature, displacement, mechanical stresses, carrier density, and excess pore water pressure in response to the magnetic field is analyzed. Practical boundary conditions are included to simulate real-world scenarios, uncovering complex interactions between the electromagnetic, thermal, and mechanical fields. The findings emphasize the magnetic field's significant role in altering the material's behavior, with potential applications in developing magneto-sensitive semiconductor devices. Additionally, the results offer valuable insights for fields such as geophysics and biomedical engineering, where the interaction between multiple fields is critical. Comparative plots further illustrate the magnetic field's effect on the wave propagation properties

Keywords: Hydrodynamic; Silicon; Porosity; Laser Pulse; Magnetic field; Semiconductors.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة التقانيات والدراسات البحرية

Arab Academy
for Science, Technology & Maritime Transport

Enhanced Quantum Entanglement in Hybrid Atomic-Optomechanical Systems via Nonlinear Cross-Kerr Interactions.

Hasnaa M. Saad, ²S. I. Ali, ¹M. Abu-Shady, ¹H. F. Habeba

1Mathematics Department and Computer Science, Faculty of Science Menoufia University, Shebin Elkom 32511, Egypt

2Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract

This study proposes a simple method to generate the quantum entanglement in an optomechanical system interacting with a single-mode cavity field under cross-Kerr and damping effects. It analyzes how coupling strength, detuning, and external field interactions impact entanglement measures such as negativity, algebraic tangle, and geometric tangle. The research derives the effective Hamiltonian and examines the temporal evolution of the output density state, focusing on the interactions between the movable mirror, the atom, and the cavity field. Findings reveal that stronger coupling and optimal detuning enhance entanglement. The study also explores how these interactions affect the system's behavior and state evolution, offering valuable insights for advancing quantum state control in optomechanical systems with potential applications in quantum information processing.

Keywords: Cavity optomechanical system, Effective Hamiltonian, Entanglement generation

The Stability of Electrostatic Waves in a Multi-Component Magnetized Plasma System

Dr. Shady El-Monier

Associate Professor of Physics, institute of Basic and Applied Science, AAST

Abstract

Theoretical research has been conducted on multi-component magnetized plasmas consisting of ions, electrons, and positrons. The reductive perturbation approach was applied to evaluate the nonlinearity of the plasma system, while the small- k expansion perturbation method was used to analyze the stability of ion-acoustic structures propagating at oblique angles. The current study shows that the solitary wave structures depend on the concentration and temperature of electrons and ions. Furthermore, a comparative study of energy and instability growth rate behaviour with respect to system parameters reveals that higher energy and lower instability growth rates occur at larger ion density, velocity, or higher electron temperatures. Our research may be useful in understanding the dynamics of electron-positron-ion plasmas in astrophysical environments.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

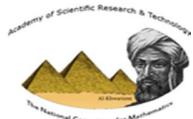
Simulation study of the induced magnetic field's impact for Jeffrey fluid with a complex wavy slip boundary within a curved tube.

Hadeer A. Azzam¹ Kh. S. Mekheimer², R.E. Abo-Elkhair³, Shaimaa F. Ramadan⁴

2,3 Department of Mathematics, Faculty of Science (Boys), Al-Azhar University, Nasr City (11884), Cairo Egypt.

1,4 Department of Mathematics, Faculty of Science (Girls), Al-Azhar University, Nasr City (11751), Cairo, Egypt.

1,3 Department of basic science, October High Institute for Engineering and Technology - OHI, 2nd Neighborhood, 3rd District, 6th of October, Giza, Egypt.


Abstract

This paper focuses on the complex wavy flow of a Jeffrey fluid with the impact of induced magnetic field in a curved tube. Given the broad range of applications of curved geometry in various industrial and physiological flow situations, the study examines how this flow is influenced by an induced magnetic field and second-order slip boundary conditions. The problem's resulting equations are solved using the Mathematica program and the ND Solve command. Under the assumptions of a small Reynolds number and the extended wavelength approximation, we derived solutions for the velocities of both the fluid and particulate phases. This includes the impacts of the second slip boundaries and induced magnetic field. We also examined the axial pressure gradient along the length of the channel and the wall shear stress, considering the influence of dimensionless curvature. Explicit formulations have been provided for various aspects, including current density, magnetic force function, induced magnetic field, wall shear stress, pressure rise, and stream function. A graphical presentation was utilized to illustrate and describe the effects of the embedded parameters. The primary finding of this research is that non-dimensional curvature results in heightened pressure gradient, wall shear stress, and magnetic field function. This analytical framework holds significant importance for examining fluid dynamics in curved biological structures.

Keywords: Induced magnetic field, slip boundary conditions, curved tube, Jeffrey fluid, peristaltic flow.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology
The National Committee for Mathematics

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

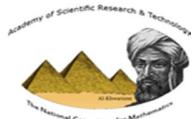
A Tree-LSTM based Approach for Enhanced Machinery Prognostics

Ahmed Ayman^{1,*}, Omneya Attallah ^{2, 3}, Ahmed Onsy ¹, Hadley Brooks ¹, Iman Morsi ²

¹School of Engineering and Computing, University of Central Lancashire, Preston PR1 2HE, UK

² Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 21937, Egypt

³ Wearables, Biosensing, and Biosignal Processing Laboratory, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21937, Egypt


Abstract

In recent years, machinery prognostics has received significant attention in research due to its essential role in various industries such as manufacturing and renewable energy. The increasing adoption of data-driven techniques, particularly recurrent neural networks (RNNs) and convolutional neural networks, has been motivated by their potential to accurately extract the influential features for estimating the remaining useful life (RUL) of operational machinery. However, the inherent complexity of machinery systems, distinguished by the non-stationarity and non-linearity of the acquired signals, presents substantial challenges to accurate prognostics. This paper proposes a novel hierarchical recurrent neural network (RNN) based on the long short-term memory model called (H-LSTM) approach to address the limitations of conventional RNNs, which rely solely on information from the immediately preceding time step for sequential data learning. In contrast, the H-LSTM model incorporates a hierarchical structure, where multiple preceding time steps influence the learning at each current time step. Evaluation of the proposed approach on the FEMTO benchmark bearing dataset under different operational conditions shows up to fourfold performance improvements over state-of-the-art methods, particularly on signals featured by low signal-to-noise ratio (SNR).

Keywords: Machinery prognostics, deep learning, recurrent neural networks, remaining useful life

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

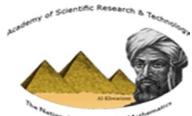
Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

The influence of negative velocity feedback control on a hybrid electric vehicle subject to external force

Fatma sherif

Zagazig university


Abstract

This paper aims to identify the stability domain of hybrid electric vehicles powertrain under various drive mode with multiple excitation sources, including irregular internal excitation (engine and motor), external excitation (road) which can cause torsional vibration and even lead to shaft failure. To achieve the goal, the simplified two-mass nonlinear dynamic model of second order for the hybrid electric vehicles powertrain (HEVP) is developed and solved using the multiple scale technique (MSPT) to obtain the approximate solution. HEVP is studied on the existence of external force at super harmonic resonance case ($\omega_0 \approx 2\omega$). The negative velocity feedback control (NVF) is used to control the amplitude of HEVP vibration. The mathematically derived frequency response equation is used in the numerical solutions that obtained using Rung-Kutta procedure. Comprehensive comparison of the amplitudes is served by using the time history program before and after the control of NVF. In addition, stability analysis for this scheme is derived using Lyapunov first (indirect) form and Routh-Huriwitz criterion. Response curves for frequency (angular speed) were studied at specific system coefficients that were both controlled and uncontrolled. The influence of various system parameters on the stability behavior are discussed.

Keywords Hybrid electric vehicle powertrain - Negative velocity feedback - Multiple scale technique - Time history – Frequency response.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

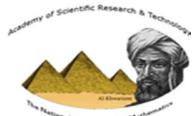
Evaluating Machine Learning Models for Cost-Effective Shipping Line Selection in Freight Forwarding

Hatem Abdelkader¹, Nermine Khalifa², Muhammad A. Arfeen³

(1) Information System Department Faculty of Computers & Information Menoufia University, Menoufia, Egypt, Hatem6803@yahoo.com

(2) Business Information Systems Department, College of Management and Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt, Nermine_khalifa@egypt.aast.edu

(3) College of International Transport and Logistics, Arab Academy for Science, Technology and Maritime Transport, Aswan, Egypt, Arfeen@aast.edu


Abstract

This research assesses the predictive efficacy of four machine learning models for cost-effective shipping line selection in freight forwarding, namely: Random Forest (RF), Decision Trees (DT), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). Based on a dataset of 983 shipment records from 37 Egyptian freight forwarding companies, the study shows that Random Forest and Decision Trees gave better performance with accuracy rates of 83% and 80% respectively. The top three most important features were: service cost, port of discharge and importer countries. The results give freight forwarders data-based ideas to select the right shipping line, making its operations work better.

Keywords: Freight Forwarding, Machine Learning, Shipping Line Selection, Random Forest, and Decision Trees.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

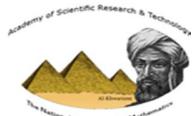
Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة التقانيات البحرية

Arab Academy
for Science, Technology & Maritime Transport

Unveiling Quantum Features of Time-Dependent Electron Spins influenced by Zeeman Energy and Symmetric Cross Spin


Esraa Redaa ¹, M. Y. Abd-Rabbou ², S. I. Alib and A.- S. F. Obada ²

1 Mathematics Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Heliopolis, Cairo, Egypt.

2 Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract

We study quantum correlations between a pair of spin-1/2 represented by an XYZ-Heisenberg chain under time-dependent symmetric cross-spin, magnetic dipole-dipole interactions and external time-dependent homogeneous magnetic field. Entanglement, steering, and steered quantum coherence are quantified through concurrence, 3-steering functions, and $\|\cdot\|_1$ norm measure of coherence, respectively. Quantum correlation controlling via the interaction direction for dipole-dipole along x-axis or z-axis and symmetric with Zeeman energy along z-axis or x-axis. The maximal bounds of all three quantifiers obtain by increasing the frequency of the time dependant and symmetric coupling parameters. Maximal bounds are enhanced for symmetric and Zeeman interaction along x-axis but for perpendicular case the maximally entangled state happen.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A Mathematical Model for Exploring Depression Diagnosis

Mohamed Magdy El-Sayed


Institute of Basic and Applied Science, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

Abstract

A mathematical model, comprising a system of differential equations, is developed to integrate biological, psychological, social, and emotional factors, thereby suggesting that depression in young women represents a multidimensional construct. This construct includes two distinct levels of vulnerability: high and low. Upon entering the system, peer pressure facilitates transitions between these levels. Utilizing compartmental modeling, the model examines the dynamics of flow between these two vulnerability levels, while also considering the effects of treatment and recovery, through the application of a nonlinear system of differential equations. It is hypothesized that young people initially occupy the high-vulnerability compartment. Numerical analysis is employed in this study to examine the existence and stability of equilibrium points within the system

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة العلوم والتكنولوجيات المائية

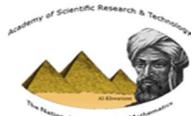
Arab Academy
for Science, Technology & Maritime Transport

Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials

A. El-Dali¹, *, Mohamed I.A. Othman²

¹ Faculty of Science, Department of Mathematics, Helwan University, Cairo 11795, Egypt

² Faculty of Science, Department of Mathematics, Zagazig University, Zagazig 44519, Egypt


Abstract

In the current work, we investigate a novel technique specialized in stability perturbation theory to analyze the primary variations such as thermal, carrier, elastic, and mechanical waves in photothermal theory. The interface of the non-local semiconductor material is utilized to study the stability analysis. The problem is established using a 1D opto-electronic-thermoelastic deformation in the context of the photo-thermoelasticity PTE framework. The Laplace transform method is used to convert the system from the time domain into the frequency domain, and the boundary conditions for the thermal, elastic, and plasma waves are applied to the interface of the medium. The homotopy perturbation method was used as an innovative approach to analyze the stability of the non-local silicon's primary physical fields. The numerical inversion method is applied, yielding many graphs focusing on important numerical factors such as non-local effects, thermo-energy, and thermo-electric coupling parameters. Investigating dual solutions between stable and unstable regions for critical parameters like thermo-electric and thermo-energy coupling factors demonstrates that the homotopy perturbation technique can effectively analyze the stability analysis. The comparison between silicon and germanium is illustrated graphically. Utilizing the homotopy perturbation technique, we can effectively examine the stability of the primary physical variations with the effect of some values for eigenvalues approaches.

Keywords: Homotopy perturbation method; Opto-electronic deformation; Laplace transform; Non-local excitation; Bifurcation solutions; Stability perturbation.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology
The National Committee for Mathematics

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة العلوم والتكنولوجيات المائية

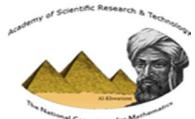
Arab Academy
for Science, Technology & Maritime Transport

Submaximality in Bi-Weak Structures

H.M. ABU-DONIA, SAMIR A. FARAG, AND RODYNA A. HOSNY

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt

Basic Science Department, Modern Academy for Engineering and Technology, Egypt


Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt

Abstract

We introduce and examine the concept of weak-submaximal structures, providing a detailed analysis of their key characteristics. Our discussion further explores related structures, including weak-door structures and weak-extremely disconnected structures, with an emphasis on their interrelationships with weak-submaximal structures. In addition, we extend the topological notion of submaximality to the bi-weak setting and prove the corresponding characteristics theorem for bi-weak submaximal structures.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

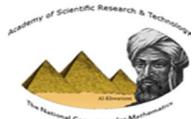
Arab Academy
for Science, Technology & Maritime Transport

Some Variants of Čech Δ -Normal Closure Space

H.M. Abu-Donia¹, W.M. Amin^{1,2}, Rodyna A. Hosny¹

⁽¹⁾Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.

⁽²⁾Basic Science Department, Faculty of Industry and Energy Technology,
New Cairo Technological University, Egypt.


Abstract

This manuscript is devoted to study several generalized notions of Čech normality in Čech Closure space. This work examines different kinds of Čech normality that are located between the Čech Δ -normal and Čech κ -normal spaces. The relations between these distinctions of Čech normality are established, and some of examples are provided to support it. By using Čech β -normal space, novel normality decompositions are obtained.

Keywords: Čech closure space; Čech δ -closed set; Čech π -closed set; Čech Δ -normal (Čech weakly Δ -normal) spaces.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

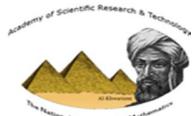
Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Dynamic Analysis of Negative Derivative Feedback Controllers with Geometrically Nonlinear Damping under Harmonic Forcing

Y. A. Amer¹, A.T. EL-Sayed², * and M. A. EL-Sayed³

¹Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.


²Department of Basic Science, Modern Academy for Engineering and Technology, Elmokattam, Egypt.

³Department of Mathematics, High Institute of Computers and Information Systems, Fifth Settlement, Egypt.

Abstract

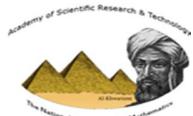
This research investigates the mitigation of vibrations caused by geometrically nonlinear damping in a system subjected to harmonic forcing. The study focuses on using a negative derivative feedback controller to achieve this vibration reduction. Recognizing the widespread use of nonlinear vibration absorbers in various engineering fields, the researchers highlight Centrifugal Pendulum Vibration Absorbers as a prime example. These absorbers utilize centrifugal forces on a pendulum to create a nonlinear restoring force, effectively suppressing vibrations at specific frequencies by adjusting the pendulum's geometry and mass. The study models the controlled system as a two-degree-of-freedom (2-DOF) system and employs the average method to approximate the GND system's solution. This approach helps identify various resonance cases, with a particular emphasis on the most challenging scenario: simultaneous resonance. To obtain a numerical solution, the researchers utilize the fourth-order Runge-Kutta technique. They analyze the system's time histories before and after implementing the NDF controller at the worst resonance case. The influence of all system parameters is thoroughly explored numerically. The study's findings demonstrate a strong correlation between the numerical solutions derived from time histories and the approximate solutions obtained through perturbation analysis. This close agreement validates the effectiveness of the proposed NDF controller in mitigating vibrations caused by GND under harmonic forcing.

Keywords: Geometrically Nonlinear Damping and Combined Stiffness; Average method; NDF; vibration control; resonance case; stability

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Leveraging Machine Learning for Causal Inference in Water Quality Assessment[†]


I Gad¹, M. M. Abd El-Raouf² and A.A. Abd El-Bary²

¹Computer science, department of mathematics, faculty of science, Tanta university, Egypt

²Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt

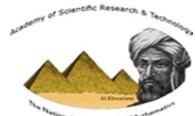
Abstract

The increasing complexity of water quality data needs advanced analytical techniques for determining causal relationships between environmental factors and water quality outcomes. This study investigates the application of machine learning models to infer causal relationships in water quality assessment. By employing algorithms such as causal forests, Random Forest and Decision Tree, we analyze multi-dimensional datasets that encompass various water quality indicators, climatic conditions, and anthropogenic influences. The proposed approach combines feature selection, causal discovery, and model validation to enhance the reliability of inferred causal relationships. The findings demonstrate that machine learning can effectively uncover hidden patterns and interactions in water quality data, providing valuable insights for policymakers and environmental managers.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

A numerical investigation of the 2-D nonequilibrium DPL bio-heat model using the ADI-FD method

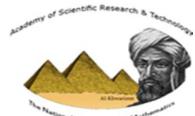

Aboelnour Abdalla, Ibrahim Abbas and Fathi Anwar.

Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt.

Abstract

Here, a two-dimensional nonequilibrium heat transfer model in living tissue was developed by performing volume averaging on the local instantaneous energy equations for blood and tissues. The dual-phase lag bioheat equations, with tissue temperature as the sole unknown, were derived by eliminating the blood temperature from the nonequilibrium model. Through this model, the thermal properties of living tissues, as well as the temperature distribution in living tissues, and the estimated resulting thermal damage due to laser irradiation are studied. The effects of delay times, blood perfusion, metabolism, and laser parameters on the spread of heat in the body and the resulting thermal damage are studied. The used numerical method is the alternating direction implicit finite difference (ADI-FD) method. The proposed ADI finite difference scheme is unconditionally stable. The results have been presented graphically and discussed in detail.

Keywords: ADI finite difference; Relaxation times; Laser radiation; Thermal damage; Nonequilibrium DPL bioheat transfer; Porous medium.


Applying a Novel (PBH) Distribution in Statistical Modeling for COVID-19 Data

M. M. Abd El-Raouf and A.A. Abd El-Bary

Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt

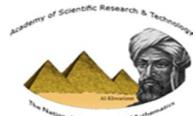
Abstract

Pandemic modeling plays a crucial role in understanding and controlling the spread of infectious diseases. This research introduces a new and highly adaptable extension of the asymmetric unit Burr-Hatke distribution, called the power Burr-Hatke distribution (PBH), and thoroughly explores its mathematical properties. Several parameter estimation methods are applied, and their asymptotic behavior is assessed through simulation experiments. These estimation methods are compared to determine the most effective approach for estimating the model's parameters. To illustrate the PBH model's practical application and benefits, a case study was conducted using a sample from the COVID-19 dataset, and its performance was compared with other well-established models. The results demonstrate that the PBH model is an excellent fit for the COVID-19 dataset and is a valuable tool for accurately modeling real-world pandemics.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Cost optimization of reinforced concrete buildings: A comparative study


Saied Hosny *, Mohammed Rady and Sameh Youssef Mahfouz

Construction and Building Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), B 2401 Smart Village, 12577, Giza, Egypt

Abstract

Designing reinforced concrete (RC) buildings involves balancing structural performance, material efficiency, and cost. Traditional methods tend to be less optimized, potentially resulting in inefficient use of materials and higher costs due to their iterative and manual nature. This led to increased interest in optimization techniques that can refine RC designs by minimizing material waste and construction costs while ensuring that safety, functionality, and economic constraints are met. This paper aims to investigate the optimal design of reinforced concrete buildings of two floor systems (solid slab and flat slab) under the Euro and Egyptian codes of practice. Two cases of loading were considered: gravity loads (Case 1) and lateral loads (Case 2). The study considers two structural floor systems—solid and flat slabs—designed to satisfy the ultimate and serviceability limit state criteria in accordance with the code of practice utilized. To achieve this, a four-story RC residential building was optimized based on specific parameters under the influence of both loading cases. A comparison with the Egyptian code of practice was also made to determine which code results in the lower optimum cost for both floor system and columns. It was found that the optimal total cost of floor systems in Case 1 did not differ from that in Case 2, while the dimensions of the columns in both systems increased. Additionally, the total optimal cost of columns increased in Case 2 by 36.84% and 21.82 for solid and flat slab columns respectively.

Keywords: Reinforced concrete; cost optimization; evolutionary algorithm; material efficiency ; Excel solver; code comparison

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Secure Privacy Preserving Banking Customer Churn Prediction Using Federated Learning and Fully Homomorphic Encryption

Yasmin Gamal

Abstract

Banking domain is interested in customer churn prediction applications due to the rising competition with financial technologies (FinTech). This fierce competition is impacting banks market share, and it was found that it's much easier and less costly to keep existing customer rather than acquiring new customers to the bank. Secure privacy preserving Customer Churn Prediction is a challenging and interesting area for research. Federated Machine Learning (FedML) has been proposed to resolve privacy problem, by using federated learning (FL) to apply Machine Learning (ML) prediction at banks locally and was proven to be one of the most effective solutions for this challenge. However, some gaps are identified for using federated machine learning (FedML) like the security attacks targeting the aggregation server or communication with the clients. Accordingly, this research proposes securing FedML vulnerabilities using Fully Homomorphic Encryption (FHE) encryption through a secure privacy preserving framework for customer churn prediction. The proposed framework guarantees the privacy preserving of customer data using Federated Machine Learning (FedML) while securing the aggregation and communication against vulnerabilities by a (FHE) provably secure algorithm. The proposed solution is demonstrated using a public dataset to predict the customer churn of 3 bank clients in different locations. FedML is applied to ensure data privacy for each client by training the model locally while only sharing the updates. FHE is used to encrypt all the updates, model aggregation and model prediction. Prediction accuracy is compared for the global model, the FedML without encryption and the FedML with FHE encryption using neural network binary classifiers. The proposed framework achieved high prediction accuracy, very close to the baseline, in addition to providing privacy and security safeguards that are mandated in banking domain.

أكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

ETMS
جامعة العلوم والتكنولوجيا المفتوحة

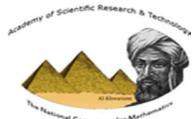
Arab Academy
for Science, Technology & Maritime Transport

Some Novel Dynamic Inequalities and their Applications on Time Scales. Theory

Assoc. Prof. Ahmed A. El-Deeb

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
E-Mail: ahmedeldeeb@azhar.edu.eg

Abstract


Natural nonlinear phenomena maybe observed in many areas. Precisely, in physics, nonlinearity is presented in fluid dynamics, nonlinear optics and so on. As we know, in some situations it is not necessary to obtain exact solutions of the initial value problems which model the natural phenomena, but it is sufficient to have enough knowledge and information about the qualitative properties of the solutions, also on the other hand, in other situations, analytically, we cannot get the exact solutions for our problem, so the dynamic inequalities like Hardy inequality, Ostrowski inequality, Opial inequality and Gronwall inequality involving functions of one and more than one independent variables, which provide explicit bounds on unknown functions, play a fundamental role in the development of qualitative theory, and can be used as handy tools in the study of existence, uniqueness, oscillation, stability and other qualitative properties of the solutions of certain dynamic equations on time scales.

Currently, the applications of dynamic inequalities on time scales is a subject of strong interest. Theefore, the main aim of this talk is to focus on all new aspcts of the recent developments on the theory of dynamic inequalities and fractional calculus on time scales and the applications of inequalities in the field of dynamic equations on time scales.

It is the purpose of this talk to collate original and significant results dealing with inequalities on time scales and its applications to dynamic equations. We also present some related works and recent results.

اكاديمية البحث العلمي والتكنولوجيا
Academy of Scientific Research and Technology

Academy of Scientific Research & Technology

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Arab Academy
for Science, Technology & Maritime Transport

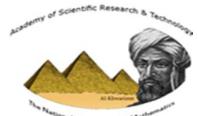
Using Legendre polynomials Formulas at Fresnel Integral Diffraction

Ahmed Y. Sayed ¹, E. S. Shoukralla ², Alfaisal A. Hasan³, Reham A. Gomaa ^{4*} and Nermin Saber ⁵.

1 Physics and Engineering Mathematics Department, Faculty of Engineering at Mataria, Helwan University, Cairo, Egypt.

2 Faculty of Electronic Engineering, Menofia University, Egypt

3 Basic and Applied Sciences Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Aswan, Egypt


4 Basic and Applied Sciences Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Aswan, Egypt

5 Faculty of Energy and Environmental Engineering, British University in Egypt.

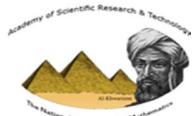
Abstract

Many advanced scientific phenomena of optics, light, and physics can be represented mathematically in the form of Volterra integral equations. In this paper, we studied the diffraction phenomena of the light beam. Since the most important category of scalar diffraction theories is the Fresnel diffraction integral. These integrals have been used in numerous studies on the propagation effects of structured light beams. These scalar diffraction theories have been widely utilized in studying the propagation of structured light. finally, we applied first-kind shifted Legendre polynomials to find the interpolate solutions of weakly singular Volterra integral equations of the second kind, where the Fresnel integral of diffraction will be involved. Numerical examples have been included in order to show the efficiency of the presented method. The exact solution of the represented example is compared to the approximate solution and the absolute error is calculated to illustrate the efficiency of the proposed method.

Keywords: Volterra Integral equations; Fresnel diffraction integral; Diffraction theory; Legendre polynomials

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.



Comparative Forecasting of Electric Load Consumption in Egypt Using Differential Equation Models

Wael M.A. Khalifaa, Ahmed F. Tayela, Ahmed M. Makhlooufa, Hesham A. Elkarnshawya,
a Department of Engineering Mathematics and Physics, Alexandria University, Alexandria 21544, Egypt

Abstract

This paper investigates electric load consumption in Egypt using different nonlinear differential equation models (NODE). The main aim is to forecast future load trends and allow policymakers to make data-informed decisions for energy management. Historical recorded data is used in estimating the parameters of each model and evaluating the performance of each model based on the statistical metrics. Based in these statistical metrics, comparative analysis shows that the logistic model and the linear model are the best models to capture the growth trend. Hence, they are used to forecast the electric load consumption up to year 2035. Results shows that the NODE models are convenient and compatible for energy forecasting.

Arab Academy
for Science, Technology & Maritime Transport

6th International Conference for Mathematics & Its Applications (ICMA24)
Artificial Intelligent and Computational Mathematics.

Time-periodic electrokinetic analysis of a micropolar fluid flow through hydrophobic microannulus

M. S. Faltas¹, Shreen El-Sapa²,

1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Egypt

2 Department of Mathematics and Computer Science, Faculty of Science, Damietta University, Egypt

Abstract

The oscillating aspects of pressure-driven micropolar fluid flow through a hydrophobic cylindrical microannulus under the influence of electroosmotic flow are analytically studied. The study is based on a linearized Poisson–Boltzmann equation and the micropolar model of Eringen for microstructure fluids. An analytical solution is obtained for the distributions of electroosmotic flow velocity and microrotation as functions of radial distance, periodic time, and relevant parameters. The findings of the present study demonstrate that, unlike the decrease in flow rate resulting from the micropolarity of fluid particles, velocity slip and spin velocity slip, when contrasted with Newtonian fluids, act as a counteractive mechanism that tends to enhance the flow rate. Additionally, the findings indicate that a square plug-like profile in electroosmotic velocity amplitude is observed when the electric oscillating parameter is low and the electrokinetic width is large, for both Newtonian and micropolar fluids. Moreover, in cases where there is a wide gap between the cylindrical walls and a high-frequency parameter, the electroosmotic velocity and microrotation amplitudes tend to approach zero at the center of the microannulus across all ranges of micropolarity and zeta potential parameters. Furthermore, it has been observed that the amplitude of microrotation strength rises as slip and spin slip parameters increase. Across the entire spectrum of micropolarity, the zeta potential ratio influences both the dimension and direction of the electroosmotic velocity profiles within the electric double layer near the two cylindrical walls of the microannulus. The study emphasizes the physical quantities by presenting graphs for various values of the pertinent parameters juxtaposing them with existing data in the literature and comparing them with the Newtonian fluids.

**المؤتمر الدولي السادس للرياضيات وتطبيقاتها
في ذكرى الأستاذ الراحل عطية عاشور (٢٠١٧-١٩٢٤)**
(ICMA24)

تحت رعاية

الاستاذ الدكتور / جينا الفقي
القائم باعمال رئيس اكاديمية البحث العلمي والتكنولوجيا

الاستاذ الدكتور / اسماعيل عبد الغفار
رئيس الاكاديمية العربية للعلوم والتكنولوجيا والنقل البحري

رؤساء المؤتمر

الاستاذ الدكتور / عبد الشافى عبادة **الاستاذ الدكتور / علاء عبد البارى**
نائب رئيس الاكاديمية العربية للعلوم
والتكنولوجيا والنقل البحري ومقرر اللجنة

رئيس اللجنة الوطنية للرياضيات

اللجنة الوطنية للرياضيات بأكاديمية البحث العلمي والتكنولوجيا
والأكاديمية العربية للعلوم والتكنولوجيا والنقل البحري
خلال الفترة من ٣٠ نوفمبر - ١ ديسمبر ٢٠٢٤